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■ Road slope information for energy management system

► Hybrid vehicles

► Electric vehicles

► Fuel-cell vehicles

■ Longitudinal dynamic model

Introduction
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Accurate and reliable road slope estimation is essential for 
energy management system!

Accurate and reliable road slope estimation is essential for 
energy management system!
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■ Road slope estimation algorithm based on information fusion

► On-board sensors: accelerometer, wheel speed sensors

► GPS information

► Powertrain force information

■ 3D map generation algorithm based on the road slope estimate

Research Objectives
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Road slope estimation 
based on 
information fusion
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System Overview

Information sources for road slope 

Constant Slope
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Multiple Road Slope Model
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■ On-board sensors based road slope estimation

► Wheel speed sensors

► Longitudinal accelerometer = Vehicle acceleration + Gravity

On-board Sensors based Estimation (I)
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■ Advantages

► Does not required the prior knowledge of the vehicle model and parameters

► Independent to the external environment condition

■ Disadvantages

► Acceleration sensor noise

► Differential error of wheel speed sensors

► High-frequency noise from the vehicle pitch motion

On-board Sensors based Estimation (II)

θ

Pitch
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■ GPS based road slope estimation

► The ratio of vertical to horizontal velocity from GPS receiver

GPS based Estimation (I)
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■ Disadvantages

► Highly depend on the GPS signal condition

► Cannot update the road slope during the stop or low speed condition

■ Advantages

► Road slope measurement is very accurate since the three-dimensional 

velocities are measured using the Doppler effect of a GPS satellite signal

► Insensitive to the vehicle pitch motion

GPS based Estimation (II)
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■ Longitudinal dynamic Model

Powertrain Force based Estimation (I)
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■ Advantages

► Independent to the external environment condition

► Additional sensors do not require for road slope estimation 

■ Disadvantages

► Sensitive to the changes of model parameters

► Cannot update the road slope during braking and stop

Powertrain Force based Estimation (II)

Time [S]
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■ Summary

Characteristics of Road Slope Measurement Sources

On-board sensor 

based

Estimation

GPS 

based

estimation

Powertrain force

based

estimation

Independent to pitch motion

Independent to external environment

Can work in stop condition

Independent to braking

No additional cost
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■ Information fusion with IMMPDA filter

IMMPDA-based Road Slope Estimation

On-board Sensors GPS

Powertrain force

Information

Fusion

IMM-PDA

filter
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IMM-PDAF

IMMPDAF
Interacting Multiple 

Model
- Adapting road slope conditions

Probabilistic Data 

Association
- Sensor fusion

Filter
- Bayesian Theory
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■ Constant Slope Road (CSR) Model

■ Constant Rate Slope Road (CRSR) Model

Multiple Road Slope Model

θ

constantθ = 0θ =& 1k k
θ θ+ =

constantθ =& 1

2

x

x

θ

θ

=

= &

1 1

2 2

0 1

0 0

x xd

x xdt

    
=    
    

1

1

0 1
k k

Tθ θ
θ θ

+

     
=     

     & &



- 17 -

Copyright @ ACE Lab, All rights reserved

Interacting Multiple Model (IMM) Filter

InteractingPrevious 
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Elementary Filters
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▶ PDA Algorithm

▶ PDA Filter

Probabilistic Data Association (PDA) Filter
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PDA Filter Concepts

■ Weighting each measurement using Bayesian filtering theory

Validation Gate
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Experiments
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■ Test site – Yeongjong Grand Bridge

► Reference slope angle: 1.95 %

Experiments – Constant Slope Condition (I)
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■ Raw data from each measurement method

Experiments – Constant Slope Condition (II)
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■ Slope estimation with IMMPDA filter

Experiments – Constant Slope Condition (IV)
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■ Test site – Hanyang University

Experiments – Poor Measuring Condition (I)
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■ Estimation results

Experiments – Poor Measuring Condition (II)
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■ 3D road map can provides future condition of road slope to the 

energy management system in order to generate optimal driving 

strategy

3D Road Map Generation
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■ A real-time road slope estimation algorithm based on information 

fusion of GPS, on-board sensors, and powertrain force is proposed 

to apply for the energy management system of electric vehicles

■ The proposed information fusion algorithm can improve accuracy 

and reliability of the road slope estimate based on the IMMPDA filter

■ Road slope estimated from the suggested estimation algorithm is 

used for 3D map generation

■ The generated 3D map can provide predicted information of road 

slope to energy management system in order to generate optimal 

driving strategy 

Conclusion
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Thank you for
your attention.
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Case Studies
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■ In the Variable Slope Condition

Speed Control of Autonomous Car A1
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■ In the Variable Slope Condition

Distance Control of Autonomous Car A1
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■ Ohnishi, Hiroshi, et al.,

“A study on road slope estimation for automatic transmission 

control,” in 2000 JSAE Review

���� On-board sensor based estimation

■ Peng, H., et al., 

“Recursive least squares with forgetting for online estimation of 

vehicle mass and road grade: Theory and experiments,” in 2005 

Vehicle System Dynamics

���� Power-train model based estimation

■ Bae, H. S., et al., 

“Road grade and vehicle parameter estimation for longitudinal 

control using GPS,” in 2001 IEEE IV

���� GPS based estimation

Previous Studies
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■ Test Site – Mountain Roads in Yeonjong Island

Experiments – Variable Slope Condition (I)

Test Site
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■ Information Sources for Road Slope

► On-board Sensors

► GPS

► Powertrain Model

Experiments – Variable Slope Condition (II)
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■ Slope Estimation with Single-Model Kalman Filter

Experiments – Variable Slope Condition (III)

Constant Slope Model
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■ Slope Estimation with IMMPDA Filter

Experiments – Variable Slope Condition (IV)

Estimation Results with the IMMPDA filter
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■ Large Pitch Condition on the Flat Road

Experiments – Large Pitch Condition (I)
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■ Large Pitch Condition on the Flat Road

Experiments – Large Pitch Condition (II)
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3D map construction based 
on road slope information
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Map Generation Based on Optimal Smoothing (I)

1. System Model
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■ System model

Map Generation Based on Optimal Smoothing (II)
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■ Measurement model

Map Generation Based on Optimal Smoothing (III)
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