

The 27th INTERNATIONAL
ELECTRIC VEHICLE
SYMPOSIUM & EXHIBITION
BARCELONA
17th-20th November 2013

Towards advanced BMS algorithms development for (P)HEV and EV by use of a physics-based model of Li-ion battery systems

Speaker: Martin Petit

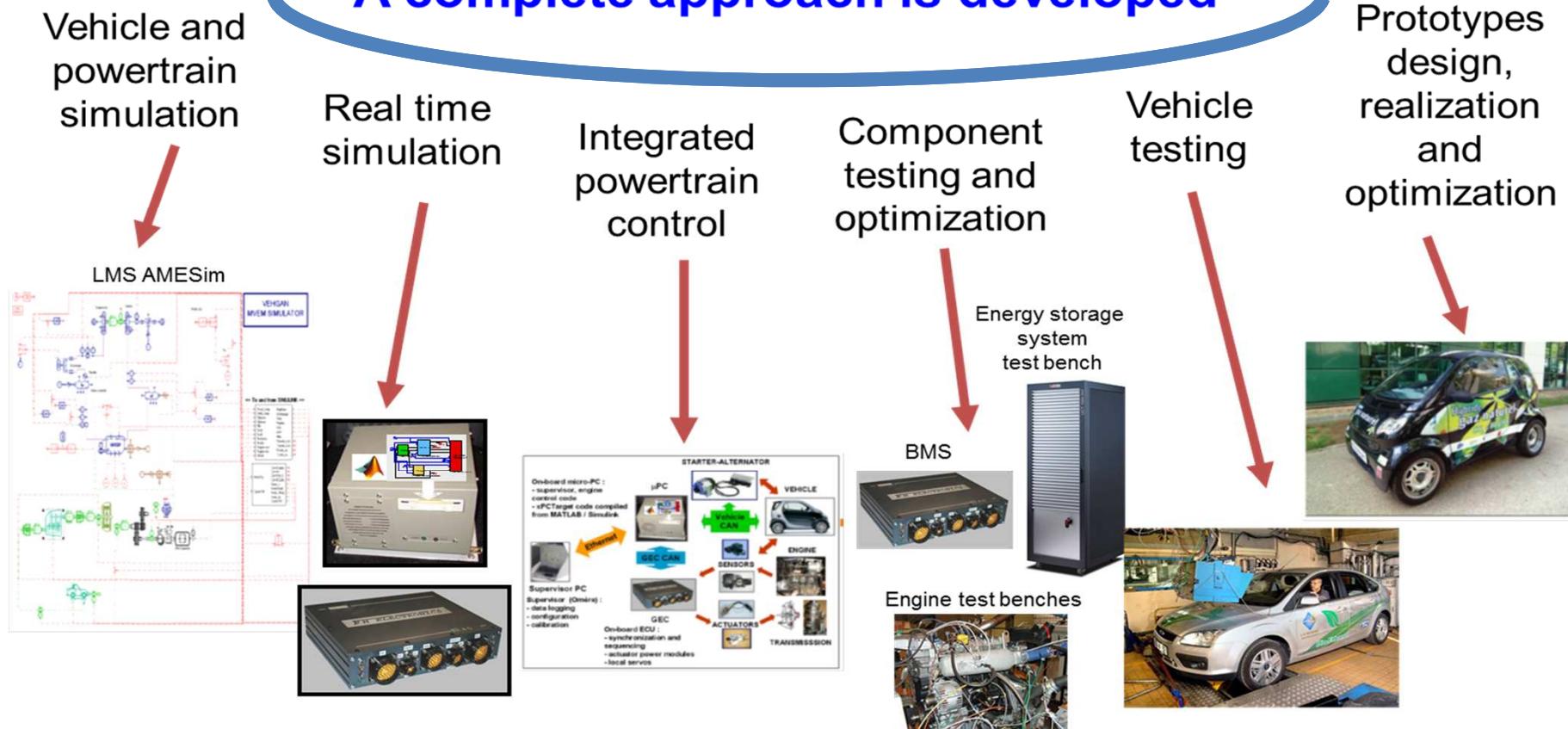
Authors: Eric Prada, Domenico Di Domenico, Yann Creff,
Valérie Sauvant-Moynot

IFPEN, Lyon

Organized by

Hosted by

In collaboration with


Supported by

IFPEN R&D

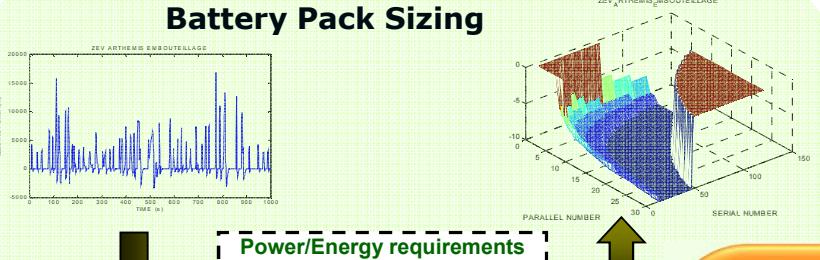
Electrochemical storage system models

A complete approach is developed

Organized by

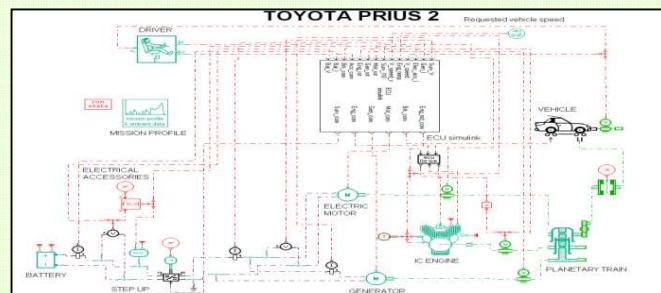
Hosted by

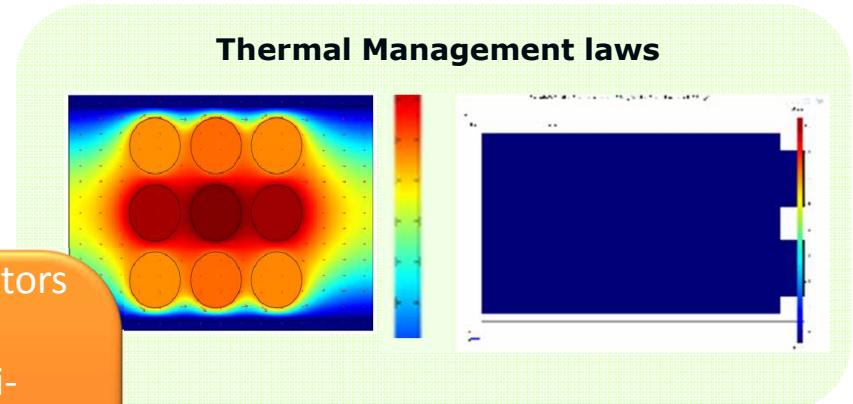
In collaboration with


Supported by

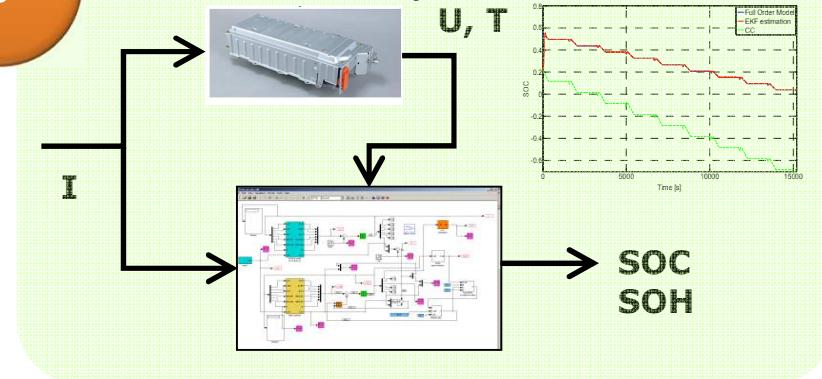
IFPEN R&D

Electrochemical storage systems models


Battery Pack Sizing


Power/Energy requirements
 or vehicle mission profiles
 Batch Simulations with
 cell constraints
 & vehicle constraints

Battery and supercapacitors characterization
 Multi-Physics & Multi-Dimensional Models
 Electrochemical models,
 Impedance-Based models
 Aging

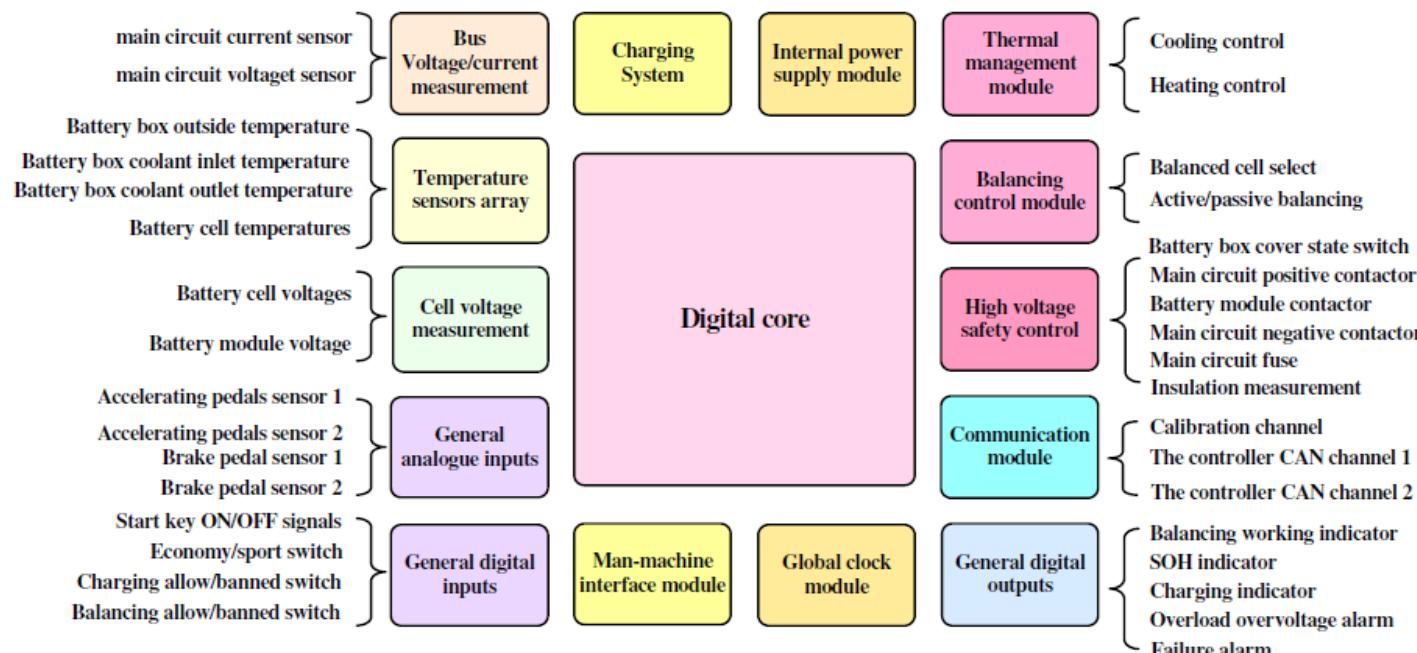

HEV / PHEV / EV Simulators (Available LIBES software on AMESim)

Thermal Management laws

Model Based BMS estimators SOC / SOH U, T

Organized by

Hosted by


In collaboration with

Supported by

Introduction to BMS functions

- The battery management system (BMS) has to ensure reliable and safe use of stored electrical energy onboard (P)HEV and BEV
- Different functions to monitor the battery: SOC

→ Herein, focus on a **Battery Intensity Management Algorithm (BIMA)** and the related methodology to design charge/discharge maximal intensity (CMI/DMI)

Organized by

Hosted by

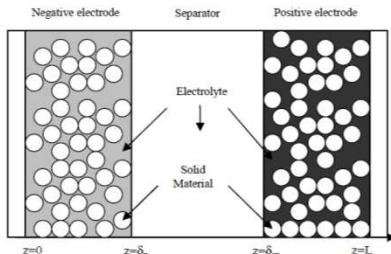
In collaboration with

Supported by

- I. Electrochemical and thermal model development
- II. Model calibration
- III. Model-based methodology for the design of BMS laws
- IV. Application of the methodology (P)HEV and EV BMS
- V. Conclusions and Perspectives

Organized by

Hosted by


In collaboration with

Supported by

Hypotheses and modeling approach

The cell voltage (V) is expressed:

- 1) as the sum of kinetics and mass transport overpotentials in the electrodes and electrolyte
- 2) as a function of the design parameters (Porosity, Electrodes thickness...) and physical properties of electrodes and electrolyte (Diffusion coefficients, Electrochemical kinetics...)

"Hypotheses and Set of Equations can be found in Prada et al. JES 159 (9) A1508-A1519 (2012), "A Simplified Electrochemical and thermal model of LiFePO₄-graphite Li-ion batteries for Fast Charge Applications"

Thermal sub-model

$$\frac{dT_{skin}}{dt} = \frac{1}{mC_p} (Q_{irrev} + Q_{rev} - q_n)$$

Energy Balance

$$Q_{irrev} = -(V - (U_p - U_n))I \quad \text{Irreversible Thermal power (W)}$$

$$Q_{rev} = -T_{skin} \frac{d(U_p - U_n)}{dt} I \quad \text{Reversible Thermal power (W)}$$

$$q_n = h_{conv} S_{cell} (T_{skin} - T_{cooling}) \quad \text{Exchange Thermal power (W)}$$

$$T_{centre} = T_{skin} \left(1 + \frac{h_{conv} S_{cell}}{\lambda_{cell} r_{cell}} \right) - T_{cooling} \frac{h_{conv} S_{cell}}{\lambda_{cell} r_{cell}} \quad \text{Internal temperature (K)}$$

Modified SP Electro-thermal model

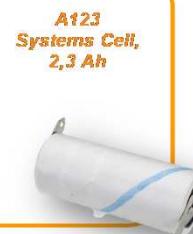
Electrochemical sub-model

Cell Voltage (V)

$$V(t) = U_p \left(\frac{c_{s,p}^s}{c_{s,p,max}} \right) - U_n \left(\frac{c_{s,n}^s}{c_{s,n,max}} \right)$$

$$+ \frac{RT}{\alpha F} \ln \left(\frac{-R_{s,p}}{6\varepsilon_{s,p} j_{0,p} A \delta_p} I + \sqrt{\left(\frac{R_{s,p}}{6\varepsilon_{s,p} j_{0,p} A \delta_p} I \right)^2 + 1} \right)$$

$$+ \frac{R_{s,p}}{6\varepsilon_{s,p} j_{0,p} A \delta_p} I + \sqrt{\left(\frac{R_{s,p}}{6\varepsilon_{s,p} j_{0,p} A \delta_p} I \right)^2 + 1}$$


$$+ (1-t_r) \frac{2RT}{F} \ln \frac{c_o(L)}{c_o(0)} - \frac{I}{2A} \left(\frac{\delta_n}{K_n^{\#}} + 2 \frac{\delta_{sep}}{K_{sep}^{\#}} + \frac{\delta_p}{K_p^{\#}} \right) - IR_{SZA} \quad SOC_{bat} = 100 \times \left(\frac{\theta_n^b - \theta_{n,0\%}^b}{\theta_{n,100\%}^b - \theta_{n,0\%}^b} \right)$$

State of Charge of the (+) and (-) electrodes (%)

$$\theta_p^s = \frac{c_{s,p}^s}{c_{s,p,max}} \quad \theta_n^s = \frac{c_{s,n}^s}{c_{s,n,max}}$$

State of Charge of the battery (%)

Modified SP Electro- Thermal model OUTPUT

Cell Voltage (V)

A123
Systems Cell,
2.3 Ah

SOC_{bat} (%)

T_{skin} (K)

T_{centre} (K)

Organized by

Hosted by

In collaboration with

Supported by

- I. Electrochemical and thermal model development
- II. Model calibration
- III. Model-based methodology for the design of BMS laws
- IV. Application of the methodology (P)HEV and EV BMS
- V. Conclusions and Perspectives

Organized by

Hosted by

In collaboration with

Supported by

Model calibration

- The Li-ion battery cell is a NCA/C
- The nominal capacity is 41Ah
- The cell is a mixed-typology for PHEV-EV
- Most of electrochemical and thermal model parameters are taken from literature data. Mass transport parameters are adjusted based on experimental tests
- Simulation results between experimental and model prediction at different continuous discharge rates (From manufacturer datasheet)

	Voltage (V)	Temperature (°C)
Maximum	4.1	60
Minimum	2.7	-25

Organized by

Hosted by

In collaboration with

Supported by

European
Commission

- I. Electrochemical and thermal model development
- II. Model calibration
- III. Model-based methodology for the design of BMS laws
- IV. Application of the methodology (P)HEV and EV BMS
- V. Conclusions and Perspectives

Organized by

Hosted by

In collaboration with

Supported by

Model-based methodology (1/2)

- Model-based methodology to design the allowable maximal charge and discharge current intensities (CMI & DMI)
- The battery electrochemical and thermal model is used as a virtual system to streamline experimental tests.
- The inputs are the cell voltage V_{cell} and temperature T_{cell} constraints (from manufacturer datasheet)

- Simulations (Disc) & CMI) for a specified pulse duration

	Voltage (V)	Temperature (°C)
Maximum	4.1	60
Minimum	2.7	-25

INPUTS : System physical constraints (V_{min} , V_{max} , T_{min} , T_{max} , overpotentials limits, aging...)

STEP 1 : Batch simulations to reproduce a test bench for power pulse characterization protocol in charge and discharge, for a predetermined pulse duration t_{pulse}

STEP 2 : Li-ion Battery Model to reproduce the physical battery electro-thermal behaviour; computes V_{cell} and T_{cell} and other internal states of the system for each call of the batch procedure

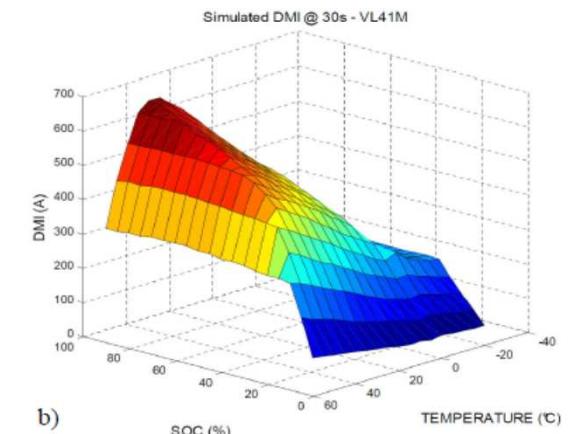
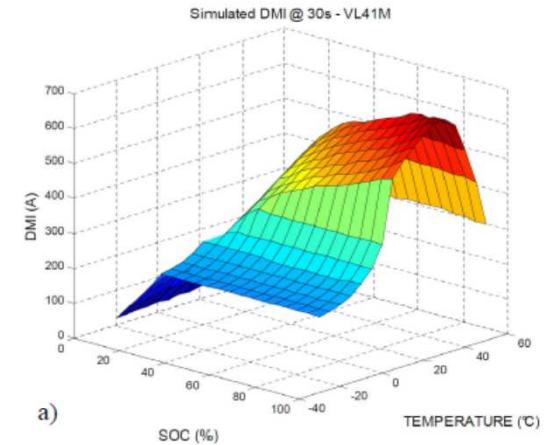
STEP 3 : Algorithms for data processing enabling for the determination of maximal currents DMI and CMI for a specified duration. Constraints $V_{min} \leq V_{cell} \leq V_{max}$ & $T_{min} \leq T_{cell} \leq T_{max}$

OUTPUTS : DMI & CMI laws for BMS specifications
DMI & CMI = $f(T, SOC, t_{pulse}, aging)$ + other information/ Integration into BMS

Organized by

Hosted by

In collaboration with

Supported by

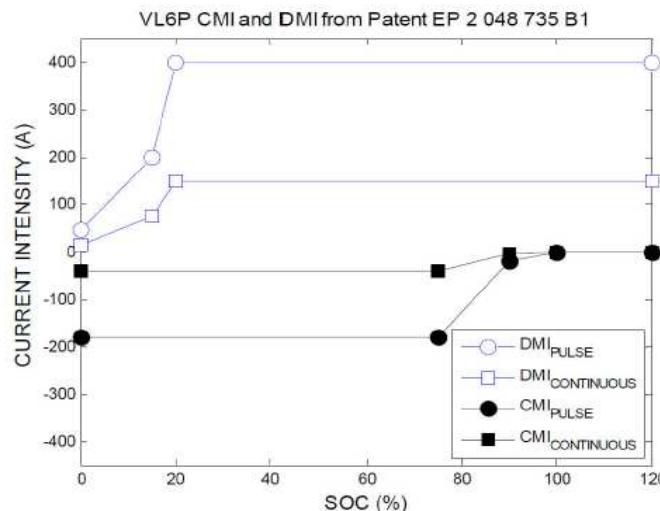
Model based methodology (2/2)

- Results of the Model-based methodology to design the allowable maximal charge and discharge current intensities
- For a given pulse duration, the output is a map representing maximal intensity as a function of SOC and T.
- The map shows different zones:
 - Voltage-induced limitation between 5° C and 35° C due to solid-state diffusion mechanism
 - Intensity-induced limitation above 35° C due to thermal constraints
 - Intensity-induced limitation below 5° C due to electrolytic-phase diffusion mechanism

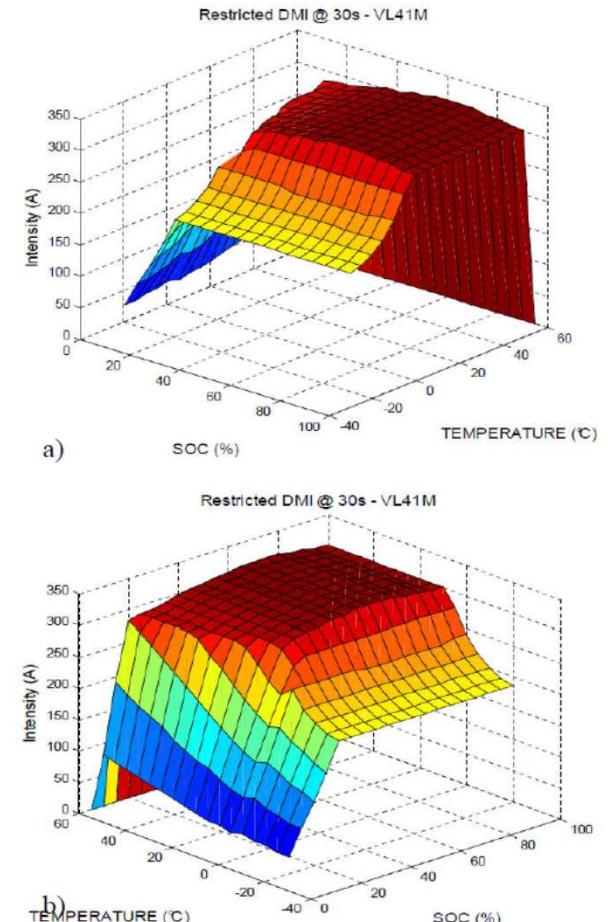
Organized by

Hosted by

In collaboration with



Supported by



Comparison with the manufacturer specifications

- For (P)HEV & BEV BMS, the simulations results are compared with the manufacturer specifications (for another Li-ion cell)

- Presence of current plateaus as well
- By restricting the map at 55° C values, one can observe similar trends as a function of SOC
- Conservative option of the manufacturer?

Organized by

Hosted by

In collaboration with

Supported by

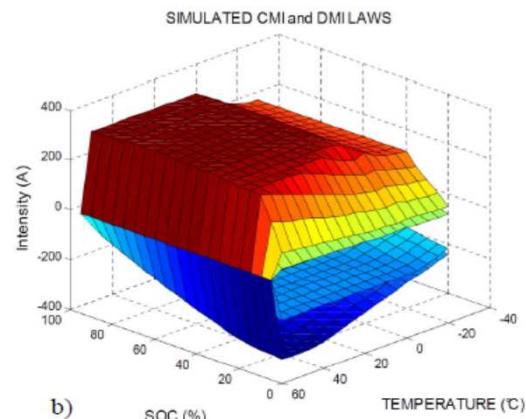
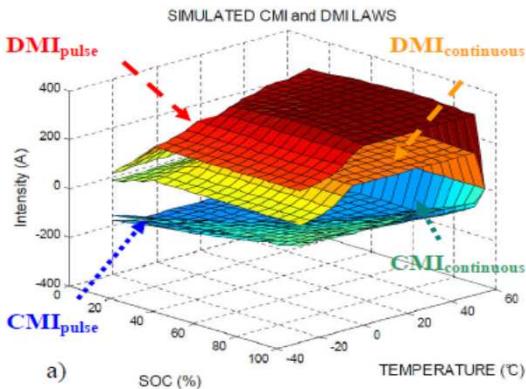
European
Commission

- I. Electrochemical and thermal model development
- II. Model calibration
- III. Model-based methodology for the design of BMS laws
- IV. Application of the methodology (P)HEV and EV BMS
- V. Conclusions and Perspectives

Organized by

Hosted by

In collaboration with

Supported by

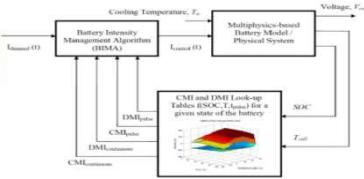
Application of the methodology for (P)HEV & EV

- Design of restricted DMI and CMI laws for pulse and continuous operations

- Design of a BIMA controller fed by the DMI and CMI maps

Organized by

Hosted by


In collaboration with

Supported by

Numerical validation of the BIMA

- Four cases are proposed to simulate different battery operations and to test the BIMA
- The demanded intensity is represented in dashed line, the intensity without control is in red line and the controlled intensity is in blue line.

Simulation Case	Initial SOC (%)	Initial Temperature (°C)
N°1	70	+ 35
N°2	70	- 5
N°3	10	+ 35
N°4	100	+ 35

- I. Electrochemical and thermal model development
- II. Model calibration
- III. Model-based methodology for the design of BMS laws
- IV. Application of the methodology (P)HEV and EV BMS
- V. Conclusions and Perspectives

Organized by

Hosted by

In collaboration with

Supported by

Conclusions and perspectives

- A model-based methodology to design the maps of allowable charge and discharge currents (CMI/DMI) for Li-ion batteries is presented and used for (P)HEV and BEV
- The methodology allows for a rapid prototyping of CMI and DMI laws based on a simplified electrochemical and thermal model
- The CMI and DMI maps feed a Battery Intensity Management Algorithm that is numerically tested and validated for different case studies.
- Future work will deal with the integration of aging adaption within the preliminary BIMA presented herein

→ Need of a generic multi-physics (electrochemical, thermal, mechanical) and multi-chemistry aging model for Li-ion technologies to extend the methodology

Organized by

Hosted by

In collaboration with

Supported by

The 27th INTERNATIONAL
ELECTRIC VEHICLE
SYMPOSIUM & EXHIBITION
BARCELONA
17th-20th November 2013

Feel free to contact us for any questions and for the upcoming AGIL(ES)²
Consortium*!

martin.petit@ifpen.fr

+33 4 37 70 22 57

valerie.sauvant@ifpen.fr

+33 4 37 70 26 85

* AGIL(ES)² : AGing modeling of Industrial Li-ion Electrochemical Energy Storage Systems

Thank you for your attention

Organized by

Hosted by

In collaboration with

Supported by

