

The 27th INTERNATIONAL
ELECTRIC VEHICLE
SYMPOSIUM & EXHIBITION.

Barcelona, Spain
17th-20th November 2013

Current Fiscal Year Status of the Hybrid & Electric Systems R&D at the U.S. – DOE

Lee Slezak/David Howell
Vehicle Technologies Office

Organized by

Hosted by

In collaboration with

Supported by

- The *EV Everywhere* Grand Challenge
- Program Structure and Budget
- Vehicle & Systems Simulation & Testing (VSST)
- Energy Storage R&D
- Advanced Power Electronics and Electric Machines (APEEM)
- Conclusions

Organized by

Hosted by

In collaboration with

Supported by

Enable the U.S. to be the first in the world to produce plug-in electric vehicles that are as affordable as today's gasoline-powered vehicles within the next 10 years.

- **Technology Push (R&D):** targets focus on reducing PEV costs
 - Advanced batteries,
 - electric drive systems,
 - Lighter weight structures,
 - enabling technologies such as advanced climate control.
- **Charging Infrastructure (Enablers):** Critical issues include codes and standards, siting, grid integration, permitting, and signage.
- **Market Pull (Consumer Acceptance):** Consumer education and exposure to PEVs, innovative PEV ownership incentives, and leadership by example among public and private fleets.

The *EV Everywhere* Grand Challenge

Organized by

Hosted by

In collaboration with

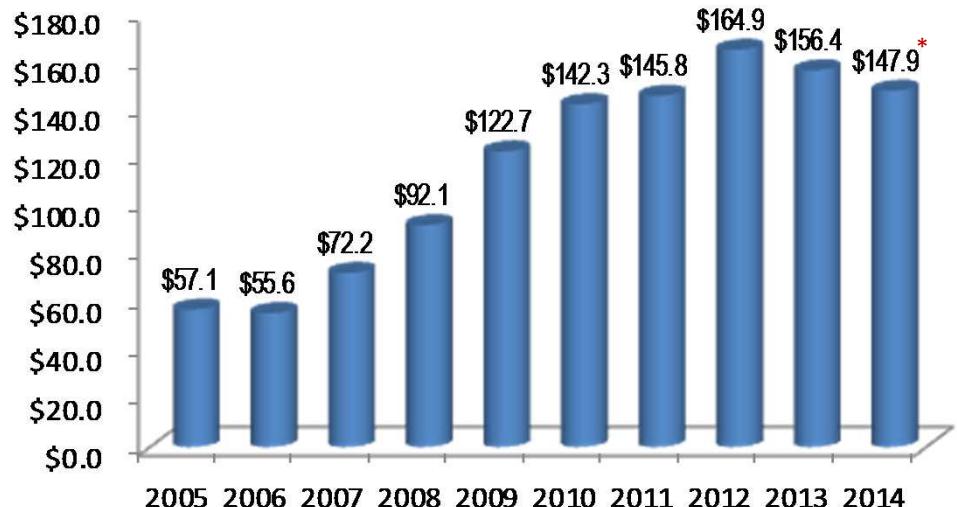
Supported by

Hybrid and Electric Systems

Vehicle & Systems Simulation & Testing

Lee Slezak
David Anderson

Electrochemical Energy Storage


David Howell
Tien Duong
Peter Faguy
Brian Cunningham

Advanced Power Electronics & Electric Machines

Susan Rogers
Stephen Boyd

Hybrid and Electric Systems R&D Budget

Budget (\$, Million)

*President's Budget Request

Organized by

Hosted by

In collaboration with

Supported by

Vehicle & Systems Simulation & Testing (VSST): Overview

Autonomie

Virtual Design

Industry Awards

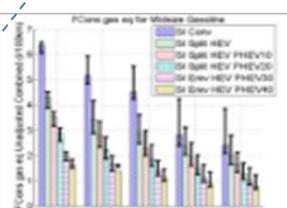
Develop, Integrate, & Demonstrate Advanced PEV Technologies

Laboratory and Field Evaluations

Performance benchmarking
Accelerated reliability data
Modeling tool validation

Vehicle Modeling and Simulation

Develop & use modeling tools
Assess technology potential
Component Interactions
Goal setting for R&D
Quantify System Requirements


Codes and Standards

Standards Committee Participation
Develop and Validate Technology Development
Technology Deveopment

Vehicle Systems Optimization

Reduce auxiliary and parasitic loads
Enabling Technologies

Accelerate Market Penetration of EVs

Predict Impact

Wireless Power Transfer

Organized by

Hosted by

In collaboration with

Supported by

VSST: Participants

Project Area	Project Group	National Labs						Industry		
		ANL	INL	LLNL	NREL	ORNL	PNNL	Vehicle OEMs	Component OEMs	Regional Government
Industry Awards Technology Development and Demonstration	PHEV Technology Acceleration and Demonstration Activity									
	Transportation Electrification									
	SuperTruck									
	Wireless Charging (Light duty)						■			
	Zero Emissions Cargo Transport									
	Energy Load Reduction, Advanced HVAC, Cabin Preconditioning							■	■	
Laboratory and Field Evaluations	Light Duty	■	■		■					
	Medium/Heavy Duty				■	■				
Vehicle Modeling and Simulation	Light Duty	■					■			
	Medium/Heavy Duty	■			■	■				
Codes and Standards		■	■				■	■		
Vehicle Systems Optimization	Aerodynamics			■						
	Fast & Wireless Charging		■	■		■	■			
	Friction & Wear	■								
	Thermal Control	■								

Organized by

Hosted by

In collaboration with

Supported by

- Initiated data collection on thousands of vehicles and EVSEs deployed through Transportation Electrification:
 - 4.6 million LDV PHEV/EV charge events on 16,000 EVSE used 36,260 MWh**
 - 181,477 LDV PHEV/EV miles and 9,586 charging events documented per day**
 - 574,435 Medium Duty EV Truck miles documented for 339 vehicles in commercial service
- Total Advanced Vehicle Testing Activity (AVTA) Experience:
 - Shifted focus from HEV to PHEV/EV
 - 120 million electric drive vehicle test miles accumulated on 11,600 Light Duty vehicles representing 122 different models to date**
 - 5.1 million test miles accumulated on 198 different MD/HD vehicles since 2002
 - Testing under varied and extreme thermal conditions
 - Evaluated 15 EVSE and DCFC hardware units, and 1 wireless charging system**
 - Multiple NDAs and CRADAs protect manufacturers' technologies and PII
- Deployed commercialized version of Autonomie vehicle modeling & simulation platform
 - Developed through CRADA between Argonne National Lab and General Motors
 - Distributed through LMS

Organized by

Hosted by

In collaboration with

Supported by

Energy Storage R&D: EV Everywhere Targets

Significant battery advancements are needed to enable a large market penetration of PEVs.

2012 Battery Technology
\$600/kWh, 100 Wh/kg, 200 Wh/l, 400 W/kg

Lithium-ion batteries in today's electric drive vehicles use a combination of positive active materials based on nickel, manganese, or iron; matched with a carbon or graphite negative electrode.

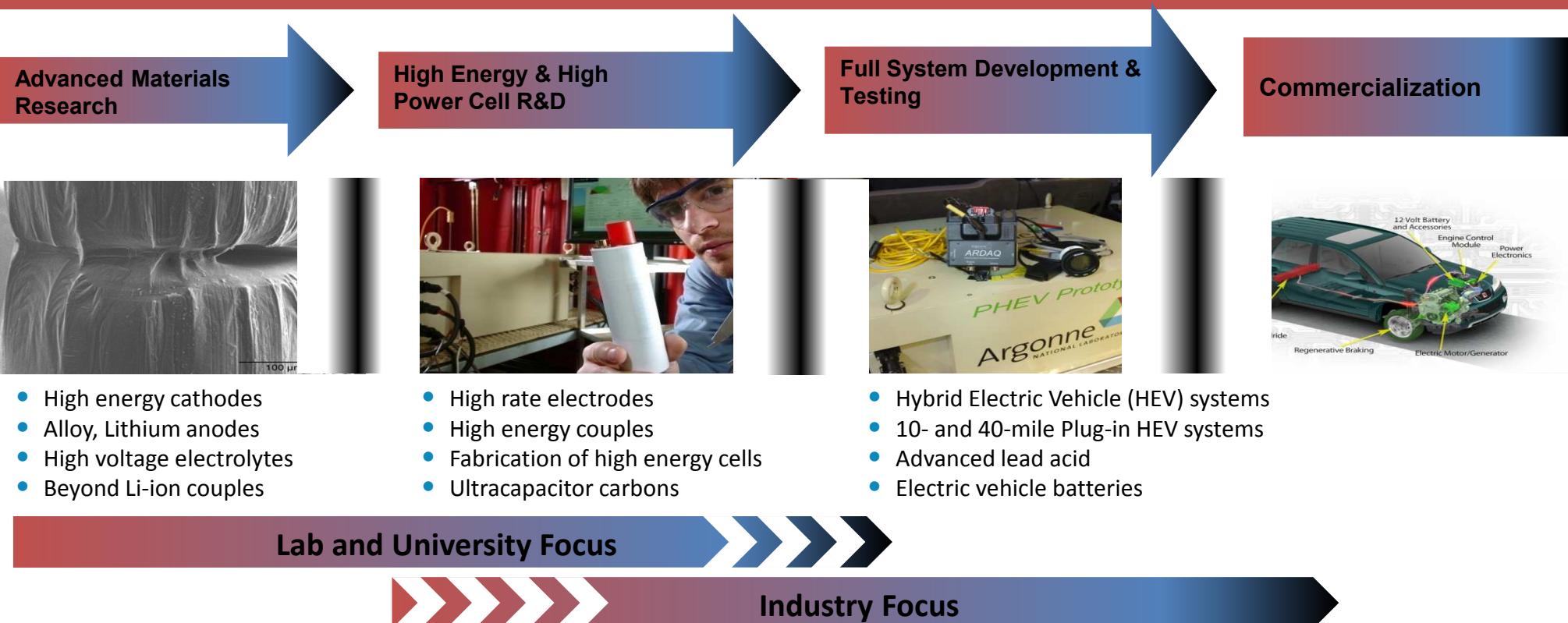
2022 Battery Technology
\$125/kWh, 250 Wh/kg, 400 Wh/l, 2,000 W/kg

New concepts in lithium-ion technologies have the potential to more than double the performance and significantly reduce the cost. Beyond lithium-ion technologies (lithium metal, lithium sulfur, and lithium air) may also meet the challenge.

Organized by

Hosted by

In collaboration with



Supported by

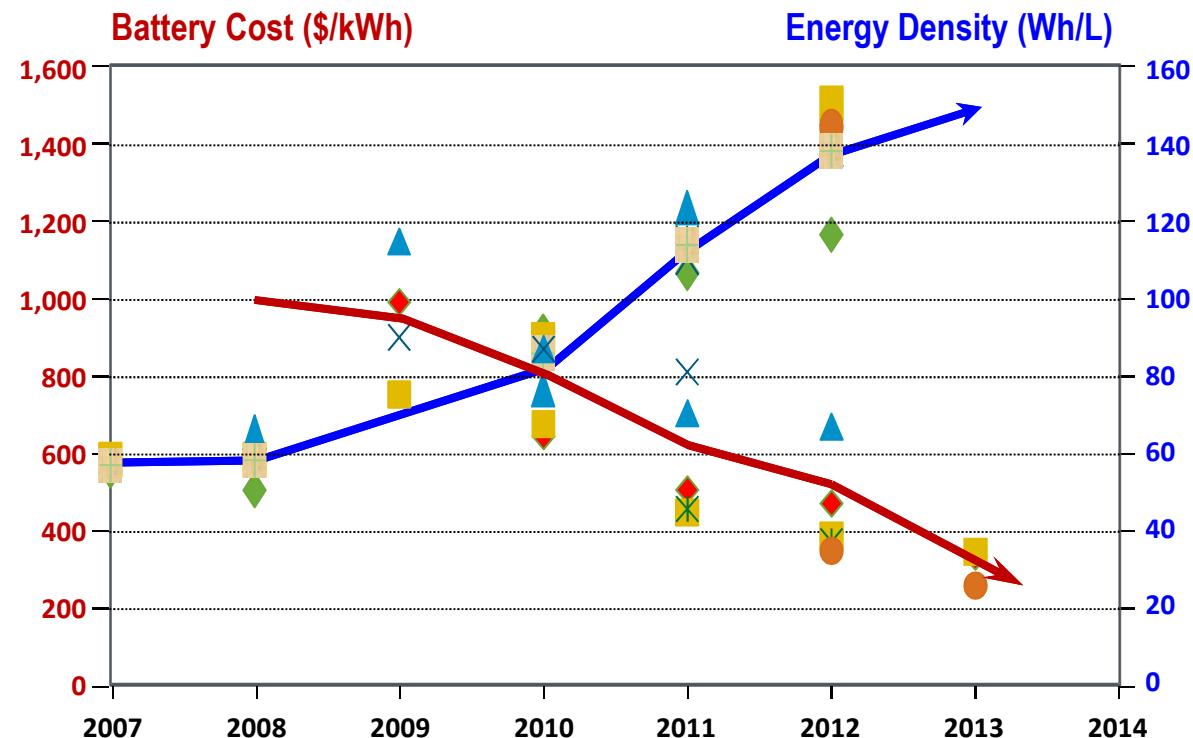
Energy Storage R&D: Programmatic Structure

The energy storage effort is engaged in a wide range of topics, from fundamental materials work through battery development and testing

Organized by

Hosted by

In collaboration with



Supported by

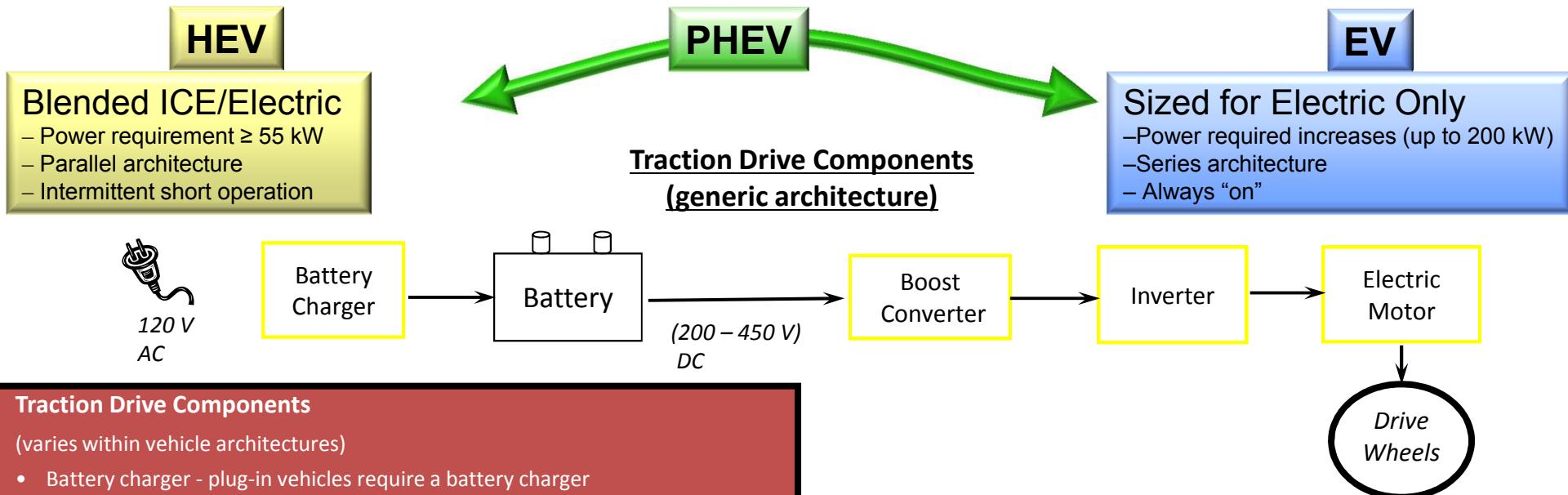
- Current cost estimates average less than **\$325/kWh** (useable)
- Manufacturer estimates with USABC's battery cost model
 - Engineered prototype cells and modules that meet DOE/USABC system performance targets.
 - Production of 100,000 batteries per year.
 - Validated using established test procedures.
 - Strong correlation with ANL BatPac model projection

Energy Storage R&D: Battery Cost Reduction & Energy Density

- These battery development projects focus on advance cathodes, processing improvements, cell design and pack optimization. Standard electrolyte & graphite anode were used.
- The NREL Clean Energy Manufacturing Initiative (CEMI) Analysis focused on similar battery technology.

Organized by

Hosted by


In collaboration with

Supported by

Covers a range of vehicle electrification applications

Traction Drive Components

(varies within vehicle architectures)

- Battery charger - plug-in vehicles require a battery charger
- Boost converter – step up the battery voltage to a higher output voltage when the electronic circuit requires a higher operating voltage than the battery can supply
- Inverter – convert direct current (DC) to alternating current (AC) to provide phased power for vehicle traction motors and generators
- Electric motor - provide power for driving

Power Management

(varies within vehicle architectures)

- Bi-directional DC-DC converter – step up or step down the high battery voltage to move power among vehicle buses to operate accessories, lighting, air conditioning, brake assist, power steering, etc

Organized by

Hosted by

In collaboration with

Supported by

- Completed analysis of non-RE motor design.
- Magnetic finite element analysis demonstrates a feasible architecture to enable the use of non-RE magnets.
- Motor build to demonstrate feasibility.

UQM Motor Package

GE imagination at work

- Evaluated multiple motor topologies – down-selected 3.
- Identified scalable manufacturing methods for advanced materials.

GE Soft Magnetic Laminates

- Completed assessments of 3 inverter types.
- Developed understanding of cost reduction attributed to technology improvements and commonality of design.

Module Testing at GM

Organized by

Hosted by

In collaboration with

Supported by

- VTO's hybrid electric systems team works with industry, universities, and national laboratories to develop advanced transportation technologies – including hybrid drive technologies, advanced energy storage, power electronics and motors, and vehicle systems simulation & testing.
- VTO works in partnership with the U.S. automakers through the United States Council for Automotive Research (USCAR) partnership, funding high-reward/high-risk research.
- Considerable progress was made and work continues with industrial, government, and scientific partners to overcome the remaining challenges to commercialization.

Organized by

Hosted by

In collaboration with

Supported by

For additional Information, please contact

Lee Slezak, Vehicle Technologies Office, 202-586-2335

Dave Howell, Vehicle Technologies Office, 202-586-3148

Organized by

Hosted by

In collaboration with

Supported by

