

The 27th INTERNATIONAL
ELECTRIC VEHICLE
SYMPOSIUM & EXHIBITION
BARCELONA
17th-20th November 2013

The Optimal Choice of Operating Points in Large Series Hybrids

Qian Bui and Peter Bauer
Department of Electrical Engineering
University of Notre Dame

Organized by

Hosted by

In collaboration with

Supported by

The 27th INTERNATIONAL
ELECTRIC VEHICLE
SYMPOSIUM & EXHIBITION

BARCELONA
17th-20th November 2013

OUTLINE:

1. Introduction
2. Brake specific fuel consumption (BSFC) characterization
3. Results
4. Example
5. Conclusion and Interpretations

Organized by

Hosted by

In collaboration with

Supported by

European
Commission

1. Introduction

- Environmental concerns: emissions
- Fossil fuel reserves: limited reserves
- Economic considerations: price of oil
- Focus here: Large Series Hybrids (Diesel ICE)

Organized by

Hosted by

In collaboration with

Supported by

The 27th INTERNATIONAL
ELECTRIC VEHICLE
SYMPOSIUM & EXHIBITION
BARCELONA
17th-20th November 2013

1. Introduction cont.

www.sukms.cn

Organized by

Hosted by

AVERE

WEA

In collaboration with

EVAA

EDTA

European
Commission

Supported by

1. Introduction cont.

- Usually:
$$\text{Power generated}(t) = \text{power needed}(t)$$
- Efficiency of ICEs is highly dependent on power output
- The efficiency problem in current day ICEs:
 - frequent load changes
 - operation away from bsfc optimum

Organized by

Hosted by

In collaboration with

Supported by

Alternatives possible with hybrid power generation units:

- Generate power at “average” power levels and buffer power mismatch.
- Use a 2 operating point scheme, with one OP being the bsfc minimum.
- Use multiple operating points to follow power trajectory or LP filtered power request.

Organized by

Hosted by

In collaboration with

Supported by

1. Introduction cont.

- Here: The 2 OP scheme, with one OP being the bsfc optimum
- The other OP needs to be found
- Many advantages over the “average power” approach:
 - can be significantly more efficient
 - less storage requirement
 - average power sometimes unknown apriori making the approach difficult to apply

Organized by

Hosted by

In collaboration with

Supported by

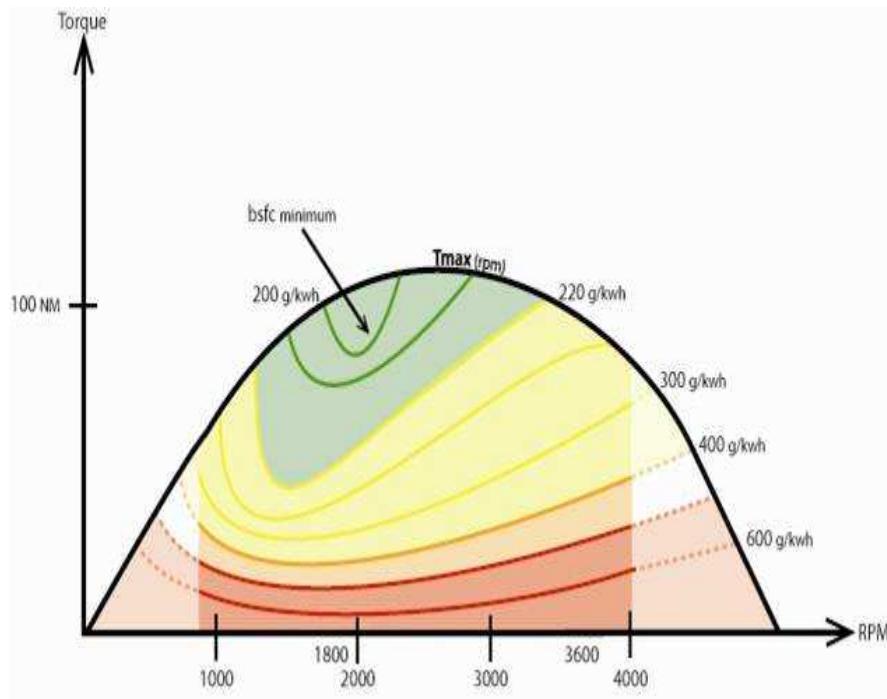
2. Brake Specific Fuel Consumption Characterization

- BSFC are often given as isolines of constant values in a torque-speed or power-speed diagram
- There exist infinitely many operating points that produce the same amount of power
- The function $bsfc(P)$ maps P to the minimal achievable bsfc value for that power P
- Typical functions $bsfc(P)$ have a pronounced minimum at mid power levels and are continuous and differentiable in power

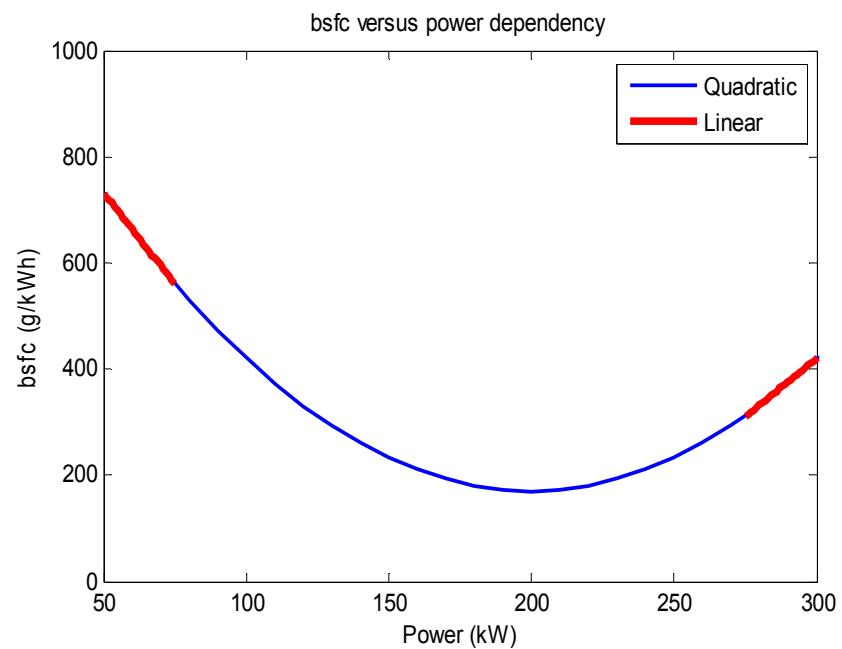
Organized by

Hosted by

In collaboration with



Supported by



2. BSFC Characterization cont.

Typical bsfc Representation

BSFC(P)

Organized by

Hosted by

In collaboration with

Supported by

Assumptions made:

- Quadratic bsfc dependency around bsfc minimum
- Linear dependency at very low and very high power
- No transient fuel consumption effects between Ops, i.e. long stay times.
- Many assumptions will be relaxed later

Organized by

Hosted by

In collaboration with

Supported by

3. Results

Fuel mass consumed using a weighted average between average power OP and the two OP scheme:

$$M = T(q P1 \text{bsfc}(P1) + q P_{opt} \text{bsfc}(P_{opt}) + (1 - 2q) P_{av} \text{bsfc}(P_{av}))$$

Where $0 < q < 0.5$

P1: low operating point power

P_{opt}: optimal operating point power

P_{av}: average power

M: fuel mass

T: engine run time

Organized by

Hosted by

In collaboration with

Supported by

3. Results

- For the two OP scheme to burn less fuel we need:

$$dM/dq < 0$$

- Remember:

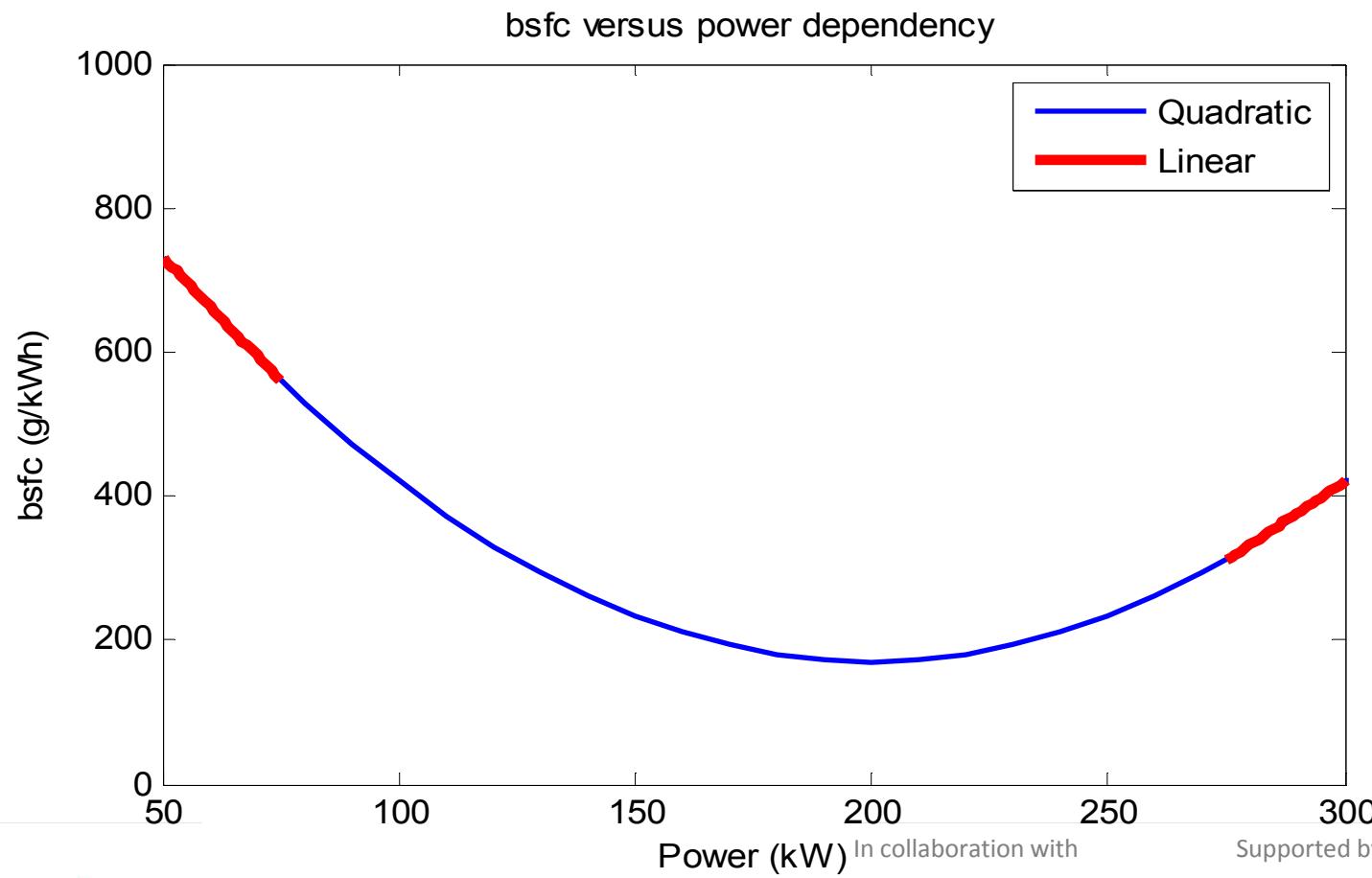
$q=0$ means only P_{av} is used

$q=0.5$ means only (P_{opt}, P_1) used

Also: $P_1 < P_{av} < P_{opt}$

Organized by

Hosted by


In collaboration with

Supported by

3. Results – BSFC Approximation

Organized by

In collaboration with

Supported by

European
Commission

3. Results – Linear BSFC Approx.

- The Linear Case:

$$\frac{dM}{dq} < 0 \text{ if } P_1 - P_{opt} < 0$$

which by definition is always satisfied.

=> If (P_1, P_{av}, P_{opt}) lie on a line with negative slope (linear case), cycling using P_1 and P_{opt} is always advantageous.

Organized by

Hosted by

In collaboration with

Supported by

3. Results – Quadratic BSFC

- The quadratic case:

$$\frac{dM}{dq} < 0 \quad \text{if} \quad 2P_1 - P_{av} < 0$$

- This implies:

$$P_1 < P_{av}/2 \quad \text{and} \quad P_{opt} - P_{av} > P_1$$

Under these conditions cycling using (P_1 and P_{opt}) is advantageous.

Organized by

Hosted by

In collaboration with

Supported by

3. Results – Other Dependencies

- The sub-linear case:
meaning that P_1 is below the line of negative slope given by P_{opt} and P_{av} .
=> Results are the same as for linear case – it is always advantageous to cycle !
- The sub-quadratic case:
meaning that P_1 is below the quadratic dependency and above the linear one.
=> Quadratic case results still hold!

Organized by

Hosted by

In collaboration with

Supported by

4. Example (Sub-quadratic case) 650KW Diesel Genset

- $P_{av} = 210\text{KW}$, $bsfc = 240 \text{ g/Kwh}$
- $P_{opt}=400\text{KW}$, $bsfc = 180 \text{ g/Kwh}$
- $P_1=20\text{KW}$, $bsfc = 320 \text{ g/Kwh}$
- Fuel consumption per hour at P_{av} : 50.4 Kg
- Fuel consumption per hour cycling between P_1 and P_{opt} : 39.2Kg
- Fuel savings in one year (operating 80% of year):
 $78490 \text{ kg} = \text{approx. } 95000 \text{ liter of Diesel } \Rightarrow \text{between } \$100,000 \text{ and } \$3,000,000 \text{ depending on application}$

Organized by

Hosted by

In collaboration with

Supported by

5. Conclusion and Interpretations

- Conditions under which cycling in large series hybrids is advantageous
- In the linear negative slope bsfc case, it is always advantageous to cycle.
- In the quadratic case, cycling is advantageous if the low power OP is sufficiently small in power.
- Other dependencies were also investigated

Organized by

Hosted by

In collaboration with

Supported by

5. Conclusion.....

- Note that “quadratic” and “linear” does not mean that the entire bsfc curve or even a part of it needs to be quadratic or linear, only the 3 points P1, Popt and Pav need to have this relationship!!
- Transient fuel consumption effects were not considered – long stay times assumed!
- Fuel savings can be large, typically 20 - 30%
- The results also apply to slowly time-variant average power

Organized by

Hosted by

In collaboration with

Supported by

5. Conclusions

Open Problems and Questions:

- ⇒ Considering transient OP phenomena and their effects on fuel savings
- ⇒ Comparison with low pass filtered power request
- ⇒ A cost analysis of fuel savings versus hardware cost for storage.

Organized by

Hosted by

In collaboration with

Supported by

The 27th INTERNATIONAL
ELECTRIC VEHICLE
SYMPOSIUM & EXHIBITION
BARCELONA
17th-20th November 2013

Questions? Preguntas?

- For questions, comments or ideas:
(Comentarios, preguntas, ideas?)

Peter Bauer

pbauer@nd.edu

(001) 574 631 8015

Organized by

Hosted by

In collaboration with

Supported by

