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Abstract

In application of battery system on electric and hybrid electric vehicles, on-line prediction of its

performance relative to the initial conditions such as instantaneous power and nominal capacity over the

life time is essential for proper use of a battery and extending its lifetime. In this paper, algorithms are

developed for estimating the available power and capacity as a state of health (SOH) of a battery system.

The algorithms are based on a simple dynamic model and parameter identification. The feasibility of the

proposed algorithms is verified through experiment of a Li-ion battery for EV.
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1 Introduction

The electrochemical degradation of battery will
be accelerated by instantaneous load changes
based on charge « discharge strategy of vehicle
and environmental conditions  especially
temperature fluctuations. It can be expressed by
battery’s parameter changes in electrical
equivalent circuit and battery’s capacity fading.
Battery’s parameter changes adversely affect the
dynamic response characteristics of terminal
voltage. It means battery’s power is faded in the
admissible voltage range for the safe battery
operation. Battery’s capacity fading means that
the remained mileage of EV is reduced.
Therefore, the quantitative diagnosis of battery
degradation necessarily has to be implemented in
battery management system for admissible
endurance management, the optimal controls to
prevent battery’s overchargeedischarge and real-
time display of remaining mileage according to
battery degradation.

In this paper, we present the terminal voltage
transient response analysis on a pulse current
input and recursive least mean square method on
the driving load pattern to identify battery’s
parameter changes using simple circuit model of

high-capacity lithium-ion battery. Using these
methods, the degree of power fading (SOHy) is
estimated. In addition, the algorithm to diagnose
degree of capacity fading (SOH.) is developed
based on the battery remaining capacity estimation.

2 Battery circuit model

A dynamic response characteristic of the battery
can be modelled as a simple equivalent electrical
circuit ignored Warburg impedance. It is shown in

Fig.1. In this model, parameters R; is a internal

ohmic resistance and parameters Ry , Cg

represent the polarization that lead to delay or
hysteresis of the battery terminal voltage. V,, open
circuit voltage of the battery is a function of SOC

(State Of Charge) to describe the relationship
between OCV and SOC.

Terminal voltage, v, could be expressed as

V, =V, (SOC) +iR; +v, 1)

and v, is a polarization voltage derived from
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RC; is a time constant (T ) of polarization

voltage to represent the transient response
characteristic of terminal voltage in Eq.(2).
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Figurel: Equivalent Circuit Model
3 Parameter ldentification

3.1 Voltage transient respon?analysis

A terminal voltage response of the unit cell on a
charge pulse current is shown in Fig.2 and Fig.3.
Since the terminal voltage has almost the same
response characteristics at the same temperature
and SOC state, battery parameters (R;,Rg,Cy)
can be estimated by a simple response analysis.
Each parameter is a solution of battery model
Eq.(1) for the pulse current input i (0<t<t)
and obtained as follows.

V() -V, () =i-R +i-R1-e ), t<t, )

vt(t)—ve(t)Jri-RS(ef';Tl —e ), t>t
att=01in(3)
_VW({t=0)-V.(t=0)

R : 4)
and at t =1, in the case of t >>Tj
RS — Vt (tl) _Ve(tl) - I:{i (5)

I
C, is given by differential equation of (3) att=0

c. - | ©)

S () -v, @) /dt]
or )
Co = Ph @)

Vi (t1) - Ve(tl) -1 Ri
with exponential function approximation in the
case of t <<Tg.

t e RI+RS—Rsexp(—Rt1 )

t(sec)
Figure2: terminal voltage response (t >> Ts)
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Figure3: terminal voltage response (t << Ts)

3.2 Recursive least mean square method

Model parameter can also be estimated by system
identification, the recursive least mean square
method using correction factor is applied and it is
shown in Fig.4.
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Figure4: Structure of Parameter estimation
The model output is
Yo = WkTQ 8)
0 : parameter vector, Y, :output vector
¥, . system matrix, Tsamp: sampling time(sec)
in Fig.4 and each vector is expressed as follows.

0= [a_TiTsamp) RI R {TlR (RI + RS )Tsamp_l)}]T (9)

Yo = Vi (k) = v, (k) (10)
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s qT
v =Y I il (11)
The result in the recursive parameter estimation
is obtained.

ék = ék—l + L (Yy - l//kTék—l) (12)
Lk is a correction factor in (11) and is given by
L, = Pk-l‘//kT L+y,. Pk_ll//kT ]_1 (13)
Po=Ri- LkaT Py (14)

4 Degree of power fading

4.1 Case of constant current charging

A terminal voltage is consistently increased by
constant current input. The time that the terminal
voltage reaches to maximum admissible voltage

Y is calculated as follows.

t max

tnax=TS|r[1_Vmax—V;gw)—'RJ T, 5

tmax:%{vtmax_ve(o)_iR} ’ ti <<TS
Since to is a function of the model parameters

and OCV, it can be decreased by parameter
changes due to power fading and it means
performance degradation of battery power.

4.2 Case of constant power charging

Fig.5 represents terminal voltage response on the
constant power. For analyzing power fading
characteristic, the current input is assumed
i=a+bt . Coefficients a, b for any given
constant power are calculated as follows.

a — F)COnSt ,
Ve (0) + (Poonst /Ve ()R (16)
b — (PCOnSt/VtmaX) — a
At

The solution of battery model Eq.(1) for the
current input expressed by first order time
function described above is as follows.

v, =V, +a(R +R)—bR,"C, +b(R, + R, It -
17

+(bR?C, —aR, )efRstCS

And ¢~ on the constant power input is
calculated as follows.

V,

tmax
t =

i Pcons
Vimax Ve (tmax) —— o0, (R| + RS)

tmax

(a_PCO"StJ. RSZCS
, 4 >>T (18)

C PCOn
tmax :as[vtmax —Ve (to) ——const le ) tl <<TS

tmax

Eq.(17) is similar to Eq.(14) because current input
is assumed a linear function.
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Figure5: Terminal voltage response on the constant
power charging

The calculated ¢ in Eq.(15) and (18) can be

decreased by parameter changes due to power
fading, therefore it can represent the degree of
power fading.

5 Degree of capacity fading

The capacity fading of battery means available
energy reduction. It will adversely affect the
remaining mileage of EV. The remaining energy
capacity of battery (SOC) is defined as the
accumulation of charge and discharge currents.

N
soc_c—n j idt (19)

C, isanominal capacity of the battery and 77 isa
efficiency in EQ.(19). Since the capacity is
decreased by battery degradation, the variation of
SOC on the same amount of chargeedischarge
current can be increased. The relationship between
the SOC variation and amount of current is
illustrated in Fig.6.

Since many SOC estimation algorithms have been
implemented using OCV rather than current
integration, the capacity degradation can be
diagnosed based on SOC in this article.

The degree of capacity fading is defined as a ratio
of SOC variation.

soH. = Cra _ 7. ASOC,
© Cni 77i ASOC&\

(20)
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Figure6: SOC variation according to degradation

The SOC variation by an arbitrary current in real
time is represented in Fig.7 and is expressed as
following equations.

ASOC =a-AAh+b

a=-L

C

(21)

n

b=ASOC* +ASOC™ = C"f 3 AAh,

n i
Assuming that efficiencies of charge and
discharge are equal,

SOH, = 1, = 1 22)
aa
Therefore, the degree of capacity fading can be
diagnosed by comparing between initial battery’s
current-SOC  Characteristic and  degraded
battery’s.
ASOC

ASOC,
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Figure7: SOC variation characteristic according to
battery degradation

6 Verification

6.1 Parameter identification of battery

Test environment is composed of charge-
discharge device, thermostatic room chamber and
battery cell.  Using this environment, the
terminal voltage is measured on a pulse current.
Fig.8 is a transient response of terminal voltage
on a 50A pulse current for 1sec with estimated
parameters by Eq.(4)~(6) at 25C.
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Figure8: Terminal voltage response analysis at 25C

Estimated parameters are matched with results of
recursive least mean square. By this method, the
terminal voltage transient response characteristics
on a small pulse current for a short time can be
analyzed simply and intuitively. Therefore, it can
be applied to real-time battery management system
(BMS) in the diagnostic service mode as well as
the off-line simulation.
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Figure9: parameter estimation using recursive least
mean square method

Fig.9 is a result of parameter estimation using
recursive least mean square method on arbitrary
current pattern. Model parameters converge to a
steady state after 20sec. The simulated terminal
voltage using these parameters is agreement with
the measured values in £ 2% error.

Table 1 shows a result of parameter estimation for
degraded batteries.
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Tablel: Estimated parameters for degraded batteries

Cell#l Cell#2 Cell#3
R, (MQ) 1.36 1.60 1.63
Rs(mQ) 0.47 0.48 0.50
Cs(F) 230 220 222
T (sec) 0.11 0.10 0.10

6.2 Estimation of power fading

The theoretical estimation of the time (t_,,) to

reach admissible limit voltage on a constant
current using Eq.(15) requires the information
about OCV. Since the battery used in electric
vehicles should guarantee the minimum power

performance even if degradation, t__ is more

max

than a few seconds and is much larger than the
time constant ( Tg = 105ms) of polarization

voltage. Therefore, t . is estimated by Eq.(15)

in case of t; >>T and the degree of power

fading relative to initial parameters of
BOL (Begin of Life) can be estimated by Eq.(23).

SOsz(l— Cma ]xlOO(%) (23)

max BOL

Fig.10 is a result of a power test performed for
the verification according to battery degradation.
Table.2 represents a estimation of the relative
degree of power fading.

Figurel0: The result of power test

Table2: Estimation of relative degree of power fading

Cell#l Cell#2 Cell#3
SOH, 0 8.3 11.4
SOH, 0 10.9 14.8
(real)

Estimated results have a similar tendency to
measurement results, however, has a difference

caused by linearization of the exponential function.

6.3 Estimation of capacity Fading

Fig.11 represents measured terminal voltages of
batteries which have a different degradation on a
same pulse current. It shows that terminal voltage
fluctuates according to the degree of capacity
fading. Therefore capacity is a state variable of
battery and capacity fading is caused mainly by
battery degradation.
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Figurell: Measured terminal voltage according to
capacity fading

Fig.12 is a measured amount of SOC changes for
the current input and table.3 shows a result of the
estimated capacity by Eq.(22)
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Figurel2: Measured SOC according to capacity fading

Table3: Estimated degree of capacity fading

Cell#1 | Cell#2 | Cell #3 | Cell #4
a, 19.3 19.6 19.8 20.4
SOH, 100 98.4 97.5 94.6
SOHc 100 98.3 96.7 94.1
(real)

The SOC estimation accuracy affects on the
estimated degree of capacity fading directly in this
method. Therefore further study about state

observer design that has a C, - SOC as new state
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in Eq.(1) is required for the robust capacity
estimation.

7 Conclusion

In this paper, a new battery degradation
diagnostic algorithm is proposed and the battery
model parameter estimation methods are
developed for the algorithm. It is tested and
verified for degraded high-capacity battery cells
in arbitrary driving patterns and environmental
conditions.

(1) The estimated results by proposed battery
model and parameter identification method are
agreement with measured values within £ 5%
margin of error. It can be used to diagnosis of
power, capacity fading and prediction, simulation
of battery performances.

(2) The estimation of power fading by parameter
identification has a similar tendency to measured
data, is slightly underestimated.

(3) The degree of capacity fading is estimated
well, however, the study is required for
enhancing the robustness through sensitivity
analysis according to the SOC estimation.
Therefore, the result of this study can be applied
to real-time state monitoring, degradation
diagnosis and estimation of remaining mileage in
battery management system for electric vehicles.
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