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Abstract 
In application of battery system on electric and hybrid electric vehicles, on-line prediction of its 

performance relative to the initial conditions such as instantaneous power and nominal capacity over the 

life time is essential for proper use of a battery and extending its lifetime. In this paper, algorithms are 

developed for estimating the available power and capacity as a state of health (SOH) of a battery system. 

The algorithms are based on a simple dynamic model and parameter identification. The feasibility of the 

proposed algorithms is verified through experiment of a Li-ion battery for EV. 
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1 Introduction 
The electrochemical degradation of battery will 
be accelerated by instantaneous load changes 
based on charge • discharge strategy of vehicle 
and environmental conditions especially 
temperature fluctuations. It can be expressed by 
battery’s parameter changes in electrical 
equivalent circuit and battery’s capacity fading.  
 Battery’s parameter changes adversely affect the 
dynamic response characteristics of terminal 
voltage. It means battery’s power is faded in the 
admissible voltage range for the safe battery 
operation. Battery’s capacity fading means that 
the remained mileage of EV is reduced.   
 Therefore, the quantitative diagnosis of battery 
degradation necessarily has to be implemented in 
battery management system for admissible 
endurance management, the optimal controls to 
prevent battery’s overcharge•discharge and real-
time display of remaining mileage according to 
battery degradation.  
 In this paper, we present the terminal voltage 
transient response analysis on a pulse current 
input and recursive least mean square method on 
the driving load pattern to identify battery’s 
parameter changes using simple circuit model of 

high-capacity lithium-ion battery. Using these 
methods, the degree of power fading (SOHp) is 
estimated. In addition, the algorithm to diagnose 
degree of capacity fading (SOHc) is developed 
based on the battery remaining capacity estimation. 

2 Battery circuit model 
A dynamic response characteristic of the battery 
can be modelled as a simple equivalent electrical 
circuit ignored Warburg impedance. It is shown in 
Fig.1. In this model, parameters iR  is a internal 

ohmic resistance and parameters SR , SC   
represent the polarization that lead to delay or 
hysteresis of the battery terminal voltage. ev , open 
circuit voltage of the battery is a function of SOC 
(State Of Charge) to describe the relationship 
between OCV and SOC. 
Terminal voltage, tv could be expressed as  
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SSCR  is a time constant ( ST ) of polarization 

voltage to represent the transient response 
characteristic of terminal voltage in Eq.(2). 
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 Figure1: Equivalent Circuit Model 

3 Parameter Identification 

3.1 Voltage transient response analysis 
A terminal voltage response of the unit cell on a 
charge pulse current is shown in Fig.2 and Fig.3.  
Since the terminal voltage has almost the same 
response characteristics at the same temperature 
and SOC state, battery parameters ( iR , SR , SC ) 
can be estimated by a simple response analysis. 
 Each parameter is a solution of battery model 
Eq.(1) for the pulse current input i )0( 1tt ≤≤  
and obtained as follows. 
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at t = 0 in (3) 
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and at 1tt =  in the case of STt >>  
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SC is given by differential equation of (3) at t = 0 
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with exponential function approximation in the 
case of STt << .  
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Figure2: terminal voltage response (t >> Ts ) 
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Figure3: terminal voltage response (t << Ts ) 

3.2 Recursive least mean square method 
Model parameter can also be estimated by system 
identification, the recursive least mean square 
method using correction factor is applied and it is 
shown in Fig.4.  
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Figure4: Structure of Parameter estimation 

The model output is  
θψ T

kky =     (8) 

θ : parameter vector, ky :output vector 

kψ : system matrix, sampT : sampling time(sec) 
in Fig.4 and each vector is expressed as follows. 
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The result in the recursive parameter estimation 
is obtained. 
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kL  is a correction factor in (11) and is given by 
1
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4 Degree of power fading 

4.1 Case of constant current charging  
A terminal voltage is consistently increased by 
constant current input. The time that the terminal 
voltage reaches to maximum admissible voltage 

maxtv is calculated as follows. 
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 Since 
maxt  is a function of the model parameters 

and OCV, it can be decreased by parameter 
changes due to power fading and it means 
performance degradation of battery power. 

4.2 Case of constant power charging  
Fig.5 represents terminal voltage response on the 
constant power. For analyzing power fading 
characteristic, the current input is assumed 

btai += . Coefficients a, b for any given 
constant power are calculated as follows.   
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The solution of battery model Eq.(1) for the 
current input expressed by first order time 
function described above is as follows. 
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And 
maxt  on the constant power input is 

calculated as follows. 
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Eq.(17) is similar to Eq.(14) because current input 
is assumed a linear function.  
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Figure5: Terminal voltage response on the constant 

power charging 

The calculated 
maxt in Eq.(15) and (18) can be 

decreased by parameter changes due to power 
fading, therefore it can represent the degree of 
power fading.  

5 Degree of capacity fading  
The capacity fading of battery means available 
energy reduction. It will adversely affect the 
remaining mileage of EV. The remaining energy 
capacity of battery (SOC) is defined as the 
accumulation of charge and discharge currents.  

 ∫⋅= idt
C

SOC
n

η
      (19) 

nC  is a nominal capacity of the battery and η   is a 
efficiency in Eq.(19). Since the capacity is 
decreased by battery degradation, the variation of 
SOC on the same amount of charge•discharge 
current can be increased. The relationship between 
the SOC variation and amount of current is 
illustrated in Fig.6.  
Since many SOC estimation algorithms have been 
implemented using OCV rather than current 
integration, the capacity degradation can be 
diagnosed based on SOC in this article.  
The degree of capacity fading is defined as a ratio 
of SOC variation.   
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Figure6: SOC variation according to degradation 

The SOC variation by an arbitrary current in real 
time is represented in Fig.7 and is expressed as 
following equations. 
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Assuming that efficiencies of charge and 
discharge are equal, 

ηη ≅= a
a

i
C a

aSOH ,  (22) 

Therefore, the degree of capacity fading can be 
diagnosed by comparing between initial battery’s 
current-SOC Characteristic and degraded 
battery’s. 
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Figure7: SOC variation characteristic according to 

battery degradation 

6 Verification 

6.1 Parameter identification of battery 
Test environment is composed of charge-
discharge device, thermostatic room chamber and 
battery cell.  Using this environment, the 
terminal voltage is measured on a pulse current. 
Fig.8 is a transient response of terminal voltage 
on a 50A pulse current for 1sec with estimated 
parameters by Eq.(4)~(6) at 25 .℃  

 
Figure8: Terminal voltage response analysis at 25℃ 

Estimated parameters are matched with results of 
recursive least mean square. By this method, the 
terminal voltage transient response characteristics 
on a small pulse current for a short time can be 
analyzed simply and intuitively. Therefore, it can 
be applied to real-time battery management system 
(BMS) in the diagnostic service mode as well as 
the off-line simulation. 
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Figure9: parameter estimation using recursive least 

mean square method 

Fig.9 is a result of parameter estimation using 
recursive least mean square method on arbitrary 
current pattern. Model parameters converge to a 
steady state after 20sec. The simulated terminal 
voltage using these parameters is agreement with 
the measured values in ± 2% error.  
Table 1 shows a result of parameter estimation for 
degraded batteries. 
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Table1: Estimated parameters for degraded batteries 

 Cell#1 Cell#2 Cell#3 
)( ΩmRi
 1.36 1.60 1.63 

)( ΩmRS
 0.47 0.48 0.50 

)(FCS
 230 220 222 

(sec)ST  0.11 0.10 0.10 

6.2 Estimation of power fading 
The theoretical estimation of the time ( maxt ) to 
reach admissible limit voltage on a constant 
current using Eq.(15) requires the information 
about OCV. Since the battery used in electric 
vehicles should guarantee the minimum power 
performance even if degradation, maxt  is more 
than a few seconds and is much larger than the 
time constant ( ST ≒ 105ms) of polarization 

voltage. Therefore, maxt  is estimated by Eq.(15) 

in case of Tt >>1  and the degree of power 
fading relative to initial parameters of 
BOL(Begin of Life) can be estimated by Eq.(23).  
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 Fig.10 is a result of a power test performed for 
the verification according to battery degradation. 
Table.2 represents a estimation of the relative 
degree of power fading. 

 
Figure10: The result of power test 

Table2: Estimation of relative degree of power fading 

 Cell#1 Cell#2 Cell#3 

PSOH  0 8.3 11.4 

PSOH  
(real) 0 10.9 14.8 

 
Estimated results have a similar tendency to 
measurement results, however, has a difference 

caused by linearization of the exponential function.  

6.3 Estimation of capacity Fading 
Fig.11 represents measured terminal voltages of 
batteries which have a different degradation on a 
same pulse current. It shows that terminal voltage 
fluctuates according to the degree of capacity 
fading. Therefore capacity is a state variable of 
battery and capacity fading is caused mainly by 
battery degradation.  

 
Figure11: Measured terminal voltage according to 

capacity fading 

Fig.12 is a measured amount of SOC changes for 
the current input and table.3 shows a result of the 
estimated capacity by Eq.(22) 

 
Figure12: Measured SOC according to capacity fading 

Table3: Estimated degree of capacity fading 

 Cell#1 Cell#2 Cell #3 Cell #4

aa  19.3 19.6 19.8 20.4 

CSOH 100 98.4 97.5 94.6 
CSOH

(real) 100 98.3 96.7 94.1 

 
The SOC estimation accuracy affects on the 
estimated degree of capacity fading directly in this 
method. Therefore further study about state 
observer design that has a SOCCn ⋅  as new state 
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in Eq.(1) is required for the robust capacity 
estimation.  

7 Conclusion 
In this paper, a new battery degradation 
diagnostic algorithm is proposed and the battery 
model parameter estimation methods are 
developed for the algorithm. It is tested and 
verified for degraded high-capacity battery cells 
in arbitrary driving patterns and environmental 
conditions. 
(1) The estimated results by proposed battery 
model and parameter identification method are 
agreement with measured values within ± 5% 
margin of error. It can be used to diagnosis of 
power, capacity fading and prediction, simulation 
of battery performances. 
(2) The estimation of power fading by parameter 
identification has a similar tendency to measured 
data, is slightly underestimated.  
(3) The degree of capacity fading is estimated 
well, however, the study is required for 
enhancing the robustness through sensitivity 
analysis according to the SOC estimation. 
Therefore, the result of this study can be applied 
to real-time state monitoring, degradation 
diagnosis and estimation of remaining mileage in 
battery management system for electric vehicles.  
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