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Abstract

The rise of hybrid and electric vehicles involves some new technological challenges, especially when it
comes to batteries. In these applications batteries will be loaded very dynamically and they have to
perform under different conditions. In this research an electrical model of a lithium-ion battery is presented,
which allows to predict the voltage response of the battery. The developed model consists of a voltage
source, some resistors and some capacitors. The values of these components are influenced by temperature,
current rate and State-of-Charge. To estimate the parameters under different conditions two parameter
estimation techniques are implemented in Matlab/Simulink: the Parameter Estimation Tool and an
Extended Kalman filter. Afterwards, the parameter values under different conditions are stored in look-up
tables. A simulation model makes it possible to validate the results of the proposed model using different
current profiles. The model error is defined as the difference between the measured and the simulated
voltage. With both techniques a RMS value of the percent error was achieved with a maximum of 3.6 %.
On the one hand the result can be improved by defining a more accurate algorithm to determine the State-
of-Charge. On the other hand the parameter estimation process can be refined by optimizing the used load

cycles.
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1 Introduction modern lithium-ion technology, the power and
energy density of batteries are increasing
significantly. Nevertheless, further developments

Nowadays batteries are an indispensable part of and research are needed.

modern society. Different applications use this
technology as mobile energy storage. The
upswing of electric mobility poses new
technological challenges for energy storage. An
electric powertrain of an electric vehicles consist
of a battery pack, an inverter and an electric
motor. The battery pack is one of the most
delicate components, because of its impact on the
performance and range of the vehicle. Due to the

Many applications draw a constant current or
power out of the battery. Electric vehicle batteries
on the contrary are loaded very dynamically due to
accelerations and decelerations. Also the currents
are relatively high and the batteries are subjected
more to temperature variations. To develop a
reliable electric vehicle an accurate battery model
is desired, which predicts the voltage response
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under different circumstances. This model could
be integrated in a Battery Management System
(BMS) to protect the battery pack. In case of
failure of the voltage measurement the model can
be used to simulate the battery and hence allow
the driver to safely stop near the road.

In literature battery behaviour has been studied
from different fields of expertise. Mathematical
models have been developed which are based on
empirical equations. These models are often too
abstract for practical use. They predict the
capacity, runtime and efficiency. Major
disadvantages are the limited accuracy (5-20%)
and the fact that no dynamic behaviour can be
predicted [5] [7]. Chemical models are used
based on the electrochemical background of a
battery.

To characterize these models, several aspects of
the battery (e.g. chemical parameters, battery
construction, material properties) have to be
known [4]. Often complex differential equations
and long calculation times are required. Its
purpose is mainly to optimize the physical design
of the battery [5]. Equivalent circuit models, or
simply electrical models, use a combination of
voltage sources, resistors, capacitors and
inductors to model a battery. According to [5] the
accuracy is 1-5%. Because of its intuitivity and
applicability this type of model was used during
this research.

For the study a second order Randle model is
considered. The model consists of a voltage
source and five other parameters, namely two
capacitors and three resistors (Figure 1).
Considered influences are the cell temperature
(T), current (I) and State-of-Charge (SOC) [2]

8].
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Figure 1: Proposed model

To characterize a battery a programmable testing
infrastructure is used, together with a climate
chamber to keep the battery at a constant
temperature. This allows to determine the model
parameters under all conditions. The parameter

estimation is done using two different techniques:
an offline estimation method based on the
Parameter Estimation Tool of Matlab/Simulink and
a real-time estimation method, an Extended
Kalman filter. The estimated parameter sets are
then stored in look-up tables. A simulation model
allows simulating the voltage response for any
time series current input. To validate the model
four different self-defined discharge tests are used.
The error is defined by the difference between the
measured voltage and the simulated voltage for
each time step. For both estimation techniques a
Root Mean Square (RMS) error was achieved with
a maximum of 3.6 %. The obtained errors with the
look-up tables from the Extended Kalman filter are
generally larger than those with the Parameter
Estimation Tool. For the Extended Kalman filter
the complexity can be found in the way of storing
the different parameters. Accurately defining how
and when to save the parameters could possible
improve the overall results.

2 Methodology and development

2.1 Test conditions

All tests were performed on a lithium iron
phosphate battery, with a nominal capacity of 40
Ah and a nominal voltage of 3.3 V. The limits used
for this study are shown in Table 1.

Table 1 : Used battery limits

Limits Value
Min. Voltage (V) 25
Max. Voltage (V) 3.75
Min. Temperature (°C) -10
Max. Temperature ("C) 70
Max. Charge (A) 120
Max. Discharge (A) 120

To load the cell according to a certain pattern, a
PEC test infrastructure (SBT0550) was used. The
tests were carried out in a climate chamber on
constant temperatures of 10 °C, 20 °C and 30 °C.
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2.2 Terminology

*  Capacity: The amount of electricity
delivered expressed in Ampere-hours (Ah).
It expresses how long a battery can deliver a
certain current. A battery of 20 Ah is able to
deliver for one hour approximately 20 A. If
40 A is required, the battery will be depleted
in less than half an hour. The discharge time
is not exact because the delivered capacity
of a battery depends on the required current
rates, temperature and other factors. The
capacity is determined by coulomb
counting, i.e. taking the integral over time
of the current.

capacity (4 h=
pacity (4 =44 Oj"

o State-of-Charge (SOC): SOC is defined as
the available capacity relative to the
nominal capacity (40 Ah). The available
capacity is calculated by subtracting the
initial capacity with the depleted capacity
throughout the test [13].

t
initial +ﬁ] d t
SOC( % =) > ;3 8 0

nominal

* C rate: A commonly used method for
expressing the charge and discharge
currents relative to the nominal capacity of
the battery. It’s a multiplication or fraction
of the nominal capacity. For a cell of 40 Ah,
a discharge current of 2C means currents of
80 A.

*  Open Circuit Voltage: When a battery is at
rest, it still has a potential voltage. This is
called the Open Circuit Voltage (OCV).
This voltage depends on temperature and
SOC. At low SOC, the OCV is lower than at
high SOC. The OCV is not dependent on
the current, as it is determined at rest.

2.3 Proposed model

Figure 2 shows the voltage response of a battery
loaded with a current step. It can be seen that
there is an instantaneous voltage drop followed
by a transient behaviour with two time constants

[5].
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Figure 2: Battery behaviour in detail

The proposed model contains electrical
components to model this behaviour. It uses a
resistor (R;) to model the instantaneous voltage
drop and two parallel chains (C, & R, and C; & Rj)
to account for the time constants. The parameters
are actually linked to chemical phenomena, e.g.
different forms of polarization [3] [4].

To disregard the background of the battery, a
number of standard charge and discharge cycles
are done to test stability (Figure 3). Because the
initial state of the battery is unknown, it is first
fully discharged. Charging is done according to the
principle of CC/CV. During the constant current
(CC) phase the battery is charged until it reaches
the maximum voltage of 3.75 V, after which a
constant voltage (CV) of 3.75 V is retained. The
charging process ends when the current only
amounts to 2.5% of the initial charging current.
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Figure 3: Preconditioning cycles

2.4 Defined test profile

The proposed model includes a voltage source,
which is considered to model the OCV of the
battery. To determine the OCV a pulsed load test
including rest periods is chosen. The battery is
charged in different stages of each time 12% SOC.
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After each charge period the battery has several
hours to stabilize, so that the measured voltage
will approach the OCV. Next, another charge
pulse follows together with a pause to determine
the OCV for another SOC value. The same
principle was handled for discharging. This
method is already demonstrated in literature [1],
[2] [12]. This method was chosen because it has
a short duration and it also allows to integrate a
sequence of pulses after each pause (Figure 4). It
was decided to use this sequence only at the
discharge phase of the test. Later on, the data
retrieved from these dynamic sequences of pulses
will be used to estimate parameters at different
SOC. The test uses one sequence of pulses
performed three times at different currents of 1C,
2C and 3C. The test was performed for all three
different temperatures.
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Figure 4: Load cycles for parameter estimations

An overview of the entire test can be found in
Figure 5.

During the charge phase the voltage
measurements of the OCV will be higher than

during discharge.

This is due to the very long time to completely
stabilize to OCV (more than 24 hours). The OCV
curve is finally obtained by taken the average of
the measured points during charge and discharge

[].

2.5 Parameter estimation

Based on the defined test profile all the data can be
collected to estimate the parameters for all the
conditions. In this section two parameter
estimation techniques are considered: Parameter
Estimation Tool and Extended Kalman filter.

2.5.1

The Parameter Estimation Tool allows to calibrate
the response of a model based on the physical
behaviour of a dynamical system. In literature few
publications can be found which use this method
[8] [11]. The response of the model is optimized by
an iterative estimation of the parameters. This
optimization is done by applying the nonlinear
least squares method.

Parameter Estimation Tool

For each combination of current value,
temperature and SOC an estimation of the different
parameters can be made. Due to the large number
of required estimations, the estimation procedure
was automated via Matlab. Since the average
current during this the test profile is low, the cell
temperature will not rise significantly. When
running the test at 10°C the cell temperature
increased only 3.4°C. When applying the test with
other temperatures, this temperature difference was
even lower.
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Figure 5: Overview of the test profile

It is therefore assumed that the parameters are
estimated at constant temperatures of 10 °C, 20

°C and 30 °C. The result of an estimation with
currents of 2C during the fourth sequence at 20 °C
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Figure 6: Result of a pulse estimation

The estimation error is calculated by taking the
difference between the simulated and measured
voltage. In this case, the error appears to have a
maximum of 30.8 mV. One by one each pulse is
estimated. These estimations showed that the
range of the maximum absolute error is between
6.4 mV and 156.7 mV. After the estimation
process, all parameter values were implemented
in look-up tables.

2.5.2 Extended Kalman filter

The Extended Kalman filter is a derivative of the
Kalman filter, which is only applicable for linear
systems. The filter uses stochastic 'a priori'
assumptions and translates this after every new
observation in a revised assumption, the 'a
posteriori' estimation. The 'a priori' and 'a
posteriori' assumptions can be found in the form
of time-dependent and measurement-dependent
update equations. The assumption is adjusted
based on new measurements. When performing
the time-dependent update equations, the filter
tries to make a prediction of the different state
variables (1) and the covariance of the result is
calculated (2). The prediction is based on a
linearized model (1). The 'a priori' estimations are
represented using a tilde (~). When performing
the measurement-dependent update equations (3),
(4), and (5), the estimation is being adjusted based
on information obtained from the recent
measurement. Here, the state variables will be
adjusted so that the difference between reality and
simulation is minimized. The covariance of the
parameters is then calculated again (6). The 'a
posteriori' estimates are represented using a caret

*).
Time-dependent update equations:
Yp=A4"x B u, (1
Bo=a R, A+Q

2)
Measurement-dependent update equations:
S, R H PPH 3)
K, 2H'Ss' )
X, =% K+\(z -H %) Q)
B = K, H B ©)

The proposed model is a nonlinear system.
Therefore, an Extended Kalman filter is used. The
dynamic model (7) and observation model (8) are
linearized each iteration in the most recent
estimate. Consequently the update equations are
changed slightly compared to the original Kalman
filter.

X = L%, md 66_%(1 X)) g p(7)
x -1

z=l@%x)«6—hx{( x Yo +p, )
6x%

While going through the iterative process, the
filter tries to estimate new values of the various
components of the model. The filter also tries to
minimize the variance of the estimations. To gain
valuable information from this filter, it is
necessary that a good model is represented that
follows the reality well and that good initial
estimates are given by the user. Both the
observation model and the dynamic model are
considered to have a certain level of noise using
the respective covariance matrices R and Q. Both
are user defined. The covariance matrix R relates
to the measurement error (noise) of the measuring
devices and is therefore easy to determine. It can
be considered as the variance measured at a
constant measurement. The covariance matrix Q
is more difficult to determine and provides the
ability to tune the filter. Here, a diagonal matrix is
defined which defines for each parameter a
certain minimum variance. By adjusting these
values, the filter can be affected to give better
estimations.

To compare the two parameter estimation
techniques, the estimations of the Extended
Kalman filter were also integrated in look-up
tables. Here, only the look-up tables for currents

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 5



of 1C are considered. Due to the realtime
estimation method, the look-up tables will always
be updated with the latest values of the system.

2.6 Developed simulation model

To simulate the proposed model a simulation
model was developed in Matlab/Simulink. The
model consists of a voltage source namely, the
OCV, and the transfer function of the internal
impedance. This research requires variation in the
parameter values during the simulation. Therefore
a second order transfer function was used, where
variables A, B, C, D, E and F represent terms of
products consisting of the different parameters
(Figure 7).

Figure 7: Scheme of transfer function

The simulation model considers as input
variables: current time series, temperature time
series and initial capacity. During each simulation
step of 100 ms the output voltage and SOC are
calculated based on parameters for corresponding
conditions.

The parameters at that moment are derived from
the earlier generated look-up tables. The correct

value for the OCV is derived from the OCV-SOC
relationship. The SOC is calculated by coulomb
counting.

3 Results

In order to validate the developed simulation
model four validation test were conducted. The
first test was performed in a climate chamber at a
temperature of 25°C. The other three tests were
not performed in a conditioned room. For these
tests the variation of the temperature was taken
into account.

3.1 Parameter Estimation Tool

The results of the simulation for the first
validation test are shown in Figure 8. As can be
seen discharge and charge sections and

pauses are considered. The initial capacity for this
validation was set to the maximum charge
capacity derived from previous tests. The
simulation ends with a final capacity of 1.6 Ah.
The RMS error is 1.4% and a maximum error of
10.8% is reached. Assuming that batteries used in
automotive will only work within a range of 20-
80% SOC, a decrease of the maximum RMS error
can be found. The results of the validation tests
are summarized in Table 2. The second validation
test is extremely dynamic and consists of
discharge pulses and pauses (Figure 9). The third
validation regime consists of discharge pulses
with different current values and the fourth and
last test is a variant of the first validation regime,
without any breaks.
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Figure 8: Validation test 1 with Parameter Estimation Tool parameters
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Figure 9: Validation test 2 with Parameter Estimation Tool parameters

Table 2: Information of tests with Parameter Estimation Tool parameters

Val. test 1 |Val.test 2 |Val.test3 |Val.testd
Temperature (°C) 25 room room room
Initial capacity (Ah) 443 441 43.6 43.8
Final capacity (Ah) 1.6 1.2 1.1 0.6
RMS error (%) 1.4 21 0.8 15
Maximum error (%) 10.8 12.3 77 8.5
Time 100_20 (s) 466 -4326|226-2958| 263 - 2417|339 - 3148
RMS error 100_20 (%) 0.8 15 0.6 1.1
Maximum error 100_20 (%) 5 8 4.6 5.2

3.2 Extended Kalman filter

Results derived with the look-up tables (generated
by the Extended Kalman filter) are shown in
Figure 10 and Figure 11. In comparison to the
results of the Parameter Estimation Tool, the
errors are generally higher. The results of the
validation tests are summarized in Table 3.

Note that the results of the fourth validation
regime are not present. During this test, the results
diverged, resulting from an extrapolation of the
look-up tables. The available look-up tables have
a range of 10-30°C. During the fourth validation
regime, however, a maximum cell temperature of
38°C was reached.
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Figure 10: Validation test 1 with Extended Kalman filter parameters
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Table 3: Information of tests with Extended Kalman filter parameters

Val. test 1 |Val. test 2 |Val. test3 |Val. test 4
Temperature (°C) 25 room room room
Initial capacity (Ah) 443 44.1 43.6 43.8
Final capacity (Ah) 1.6 1.2 1.1 0.6
RMS error (%) 3.11 3.63 0.96 —
Maximum error (%) 13.31 15.23 5.28 —
Time 100_20 (s) 466 - 4326 226 - 2958 | 263 - 2417 339- 3148
RMS error 100_20 (%) 1.85 2.00 0.52 —
Maximum error 100_20 (%) 5.09 6.87 5.14 —

4 Discussion

An important factor in the model seems to be the
relationship between the State-of-Charge and the
Open Circuit Voltage. The SOC is defined based
on the remaining energy in the cell and calculated
with coulomb counting. It was assumed that the
gained capacity during charging can be fully
obtained at discharge with an efficiency of 100%.
In reality this is not the case and the difference
can be defined as the Coulombic efficiency. This
efficiency factor allows to determine the
maximum discharge capacity when the charge
capacity is known.

The Coulombic efficiency depends on the current,
temperature, SOC, self-discharge and ageing [9]
[14]. When implementing Coulombic efficiency
into the simulation model, the SOC will therefore
be lower, hence the OCV during simulation will
also be lower. At low SOC it is noticed that the
simulated voltage for the Parameter Estimation
Tool always remains higher than the actual
voltage. When taking the Coulombic efficiency
into account, the SOC will lower, which will

result in a smaller error in the region of 20% till
0% SOC. So an accurate determination of SOC
will increase the accuracy of the model for low
and high SOC. The influence of the SOC
calculation was demonstrated by taking a
Coulombic efficiency of 97% into account during
the simulation of the first validation test. The
simulation ended at a capacity of 0.09 Ah. The
RMS minimum error is now only 0.7% and the
maximum error is 6.6%. In simulations, this
Coulombic efficiency is not known, but the results
do show that the model can be improved. It is
therefore important to predict the remaining
capacity by means of an algorithm or look-up
tables. It should also be noted that there are
different definitions of SOC in literature. One can
define that a cell is empty when it reaches its
minimum voltage. Using a correct algorithm the
final SOC should be 0%. However, it appears that
a cell after a time break still has some usable
capacity [10]. In this case, the above mentioned
theory is no longer correct and the SOC will not
be 0%.It can be concluded that an accurate SOC
determination is important for the model.
Currently, there are many studies on alternatives
for Coulomb counting to determine SOC. One
example is the estimaton of SOC using an
Extended Kalman filter [6]. This study also
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attempted to estimate the OCV, as it is related to
SOC. A small voltage error on the estimation of
the OCV, however, quickly gave an error of 10%
in the determination of the SOC.

As the SOC decreases, the estimation error
increases during simulation. The parameter
estimations with Parameter Estimation Tool show
that the error increases as the current rises. A
possible explanation for this may be due to the
assumption of a constant OCV during the
parameter estimations. When estimating a pulse,
this pulse will affect the SOC. Discharge pulses of
120 A for 20 seconds, correspond to an extraction
of 0.67Ah. At high and low SOC, the path of the
OCYV curve is no longer flat, so here it can’t be
assumed that OCV is constant during the
estimation. This concept is illustrated in Figure
12.

Figure 12: Influence of a pulse on OCV

During this research the implemented Extended
Kalman filter was also estimating the OCV. This
study shows that the OCV is a very important
factor because of the slope at high and low SOC.
The results of the Extended Kalman filter could
probably be improved by not taking OCV into
account during the estimation.

The accuracy of the model can be further
improved by optimizing the defined pulse
sequence. The pulses have a duration of ten or
twenty seconds with rest periods of thirty seconds.
This consideration has an impact on both of the
estimations. Because a break takes only thirty
seconds, it is difficult to estimate the largest time
constant. The value of the second time constant
appears to be about forty seconds. Therefore it is
proposed to increase the duration of the pulses
and rest periods. There is also a rest period
between the cycles of different loads (1 C, 2 C
and 3 C). Optionally the initial pause of three
minutes can also be increased. This original break
is currently not long enough for the battery to
stabilize. So pulses at 1C are also affecting the
voltage behaviour at 2 C and 3 C is. Another

option is to redefine the pulse sequence with only
one load current. Therefore the test will need to be
performed three times

In addition, the accuracy of the model can be
increased by avoiding extrapolation of the look-up
tables. For example, introducing a higher
resolution of the lookup tables and an extended
temperature range. It is also possible to refine the
model further e.g. a distinction of parameters for
charge and discharge.

The estimations are showing the complexity of
deciding when to store certain parameter under a
certain condition. In fact, when storing the
estimations of the Extended Kalman filter a lot of
information is lost. Nevertheless, the Extended
Kalman filter is interesting for further research. It
could be used for example to estimate the State-
Of-Health (SOH) of a battery by studying the
change of internal impedance as the battery ages.
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