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Abstract
The rise of hybrid and electric vehicles involves some new technological challenges, especially when it  

comes to batteries.   In these applications  batteries  will  be  loaded very  dynamically  and they have to  

perform under different conditions. In this research an electrical model of a lithium-ion battery is presented,  

which allows to predict the voltage response of the battery. The developed model consists of a voltage  

source, some resistors and some capacitors. The values of these components are influenced by temperature,  

current  rate and State-of-Charge.  To estimate the parameters under  different  conditions two parameter  

estimation  techniques  are  implemented  in  Matlab/Simulink:  the  Parameter  Estimation  Tool  and  an  

Extended Kalman filter. Afterwards, the parameter values under different conditions are stored in look-up  

tables. A simulation model makes it possible to validate the results of the proposed model using different  

current profiles.  The model error is defined as the difference between the measured and the simulated  

voltage. With both techniques a RMS value of the percent error was achieved with a maximum of 3.6 %.  

On the one hand the result can be improved by defining a more accurate algorithm to determine the State-

of-Charge. On the other hand the parameter estimation process can be refined by optimizing the used load  

cycles. 
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1 Introduction

Nowadays batteries are an indispensable part of 
modern  society.  Different  applications  use  this  
technology  as  mobile  energy  storage.  The  
upswing  of  electric  mobility  poses  new 
technological challenges for energy storage. An  
electric powertrain of an electric vehicles consist  
of  a  battery  pack,  an  inverter  and  an  electric 
motor.  The  battery  pack  is  one  of  the  most  
delicate components, because of its impact on the 
performance and range of the vehicle. Due to the 

modern  lithium-ion  technology,  the  power  and 
energy  density  of  batteries  are  increasing 
significantly.  Nevertheless,  further  developments 
and research are needed.

Many  applications  draw  a  constant  current  or  
power out of the battery. Electric vehicle batteries 
on the contrary are loaded very dynamically due to  
accelerations and decelerations. Also the currents  
are relatively high and the batteries are subjected 
more  to  temperature  variations.  To  develop  a 
reliable electric vehicle an accurate battery model  
is  desired,  which  predicts  the  voltage  response 
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under different circumstances. This model could  
be integrated in a Battery Management System 
(BMS)  to  protect  the  battery  pack.  In  case  of  
failure of the voltage measurement the model can 
be used to simulate the battery and hence allow 
the driver to safely stop near the road.

In literature battery behaviour has been studied  
from different fields of expertise.  Mathematical 
models have been developed which are based on  
empirical equations. These models are often too 
abstract  for  practical  use.  They  predict  the 
capacity,  runtime  and  efficiency.  Major 
disadvantages are the limited accuracy (5-20%) 
and the fact that  no dynamic behaviour can be  
predicted  [5]  [7].  Chemical  models  are  used 
based  on  the  electrochemical  background  of  a  
battery. 
To characterize these models, several aspects of  
the  battery  (e.g.  chemical  parameters,  battery 
construction,  material  properties)  have  to  be 
known [4]. Often complex differential equations  
and  long  calculation  times  are  required.  Its 
purpose is mainly to optimize the physical design 
of the battery  [5].  Equivalent circuit models, or 
simply electrical  models,  use  a  combination of 
voltage  sources,  resistors,  capacitors  and 
inductors to model a battery. According to [5] the 
accuracy is 1-5%. Because of its intuitivity and 
applicability this type of model was used during 
this research.
 
For  the  study a  second order  Randle  model  is  
considered. The  model  consists  of  a  voltage 
source  and  five  other  parameters,  namely  two 
capacitors  and  three  resistors  (Figure  1). 
Considered  influences  are  the  cell  temperature  
(T),  current  (I)  and  State-of-Charge  (SOC)  [2] 
[8].

Figure 1: Proposed model

To characterize a battery a programmable testing 
infrastructure  is  used,  together  with  a  climate 
chamber  to  keep  the  battery  at  a  constant  
temperature. This allows to determine the model 
parameters under  all  conditions.  The parameter 

estimation is done using two different techniques:  
an offline  estimation  method  based  on  the 
Parameter Estimation Tool of Matlab/Simulink and 
a  real-time  estimation  method,  an  Extended 
Kalman  filter.  The  estimated  parameter  sets  are 
then stored in look-up tables. A simulation model 
allows  simulating  the  voltage  response  for  any 
time  series  current  input.  To  validate  the  model 
four different self-defined discharge tests are used.  
The error is defined by the difference between the  
measured  voltage  and  the  simulated  voltage  for  
each time step. For both estimation techniques a 
Root Mean Square (RMS) error was achieved with 
a maximum of 3.6 %. The obtained errors with the 
look-up tables from the Extended Kalman filter are 
generally  larger  than  those  with  the  Parameter 
Estimation Tool.  For the Extended Kalman filter 
the complexity can be found in the way of storing  
the different parameters. Accurately defining how 
and when to  save  the  parameters  could  possible  
improve the overall results.

2 Methodology and development

2.1 Test conditions
All  tests  were  performed  on  a  lithium  iron 
phosphate battery, with a nominal capacity of 40 
Ah and a nominal voltage of 3.3 V. The limits used 
for this study are shown in Table 1.

Table 1 : Used battery limits

To load the cell  according to a certain pattern,  a 
PEC test infrastructure (SBT0550) was used. The 
tests  were  carried  out  in  a  climate  chamber  on  
constant temperatures of 10 °C, 20 °C and 30 °C. 
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2.2 Terminology

• Capacity: The  amount  of  electricity 
delivered expressed in Ampere-hours (Ah).  
It expresses how long a battery can deliver a  
certain current. A battery of 20 Ah is able to 
deliver for one hour approximately 20 A. If  
40 A is required, the battery will be depleted 
in less than half an hour. The discharge time 
is not exact because the delivered capacity  
of a battery depends on the required current  
rates,  temperature  and  other  factors.  The 
capacity  is  determined  by  coulomb 
counting,  i.e.  taking the integral over time 
of the current. 
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• State-of-Charge (SOC):  SOC is defined as 

the  available  capacity  relative  to  the 
nominal  capacity  (40 Ah).  The  available 
capacity  is  calculated  by  subtracting  the 
initial  capacity  with  the  depleted  capacity 
throughout the test [13].  
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• C  rate: A  commonly  used  method  for 
expressing  the  charge  and  discharge 
currents relative to the nominal capacity of 
the battery. It’s a multiplication or fraction 
of the nominal capacity. For a cell of 40 Ah, 
a discharge current of 2C means currents of  
80 A.

• Open Circuit Voltage: When a battery is at 
rest, it still has a potential voltage. This is 
called  the  Open  Circuit  Voltage  (OCV). 
This  voltage  depends  on  temperature  and 
SOC. At low SOC, the OCV is lower than at 
high SOC. The OCV is  not  dependent  on 
the current, as it is determined at rest.

2.3 Proposed model
Figure 2 shows the voltage response of a battery 
loaded with a current  step.  It  can be  seen that  
there is an instantaneous voltage drop followed  
by a transient behaviour with two time constants  
[5]. 

Figure 2: Battery behaviour in detail

The  proposed  model  contains  electrical  
components  to  model  this  behaviour.  It  uses  a 
resistor  (R1)  to  model  the  instantaneous  voltage 
drop and two parallel chains (C2 & R2 and C3 & R3) 
to account for the time constants. The parameters  
are  actually  linked  to  chemical  phenomena,  e.g.  
different forms of polarization [3] [4]. 

To  disregard  the  background  of  the  battery,  a  
number  of  standard charge  and discharge  cycles  
are done to test  stability (Figure 3).  Because the 
initial  state of  the battery is  unknown,  it  is  first 
fully discharged. Charging is done according to the 
principle  of  CC/CV.  During the  constant  current 
(CC) phase the battery is charged until it reaches 
the  maximum  voltage  of  3.75  V,  after  which  a 
constant voltage (CV) of 3.75 V is retained. The 
charging  process  ends  when  the  current  only  
amounts to 2.5% of the initial charging current.

 

Figure 3: Preconditioning cycles

2.4 Defined test profile
The  proposed  model  includes  a  voltage  source,  
which  is  considered  to  model  the  OCV  of  the 
battery. To determine the OCV a pulsed load test  
including  rest  periods  is  chosen.  The  battery  is 
charged in different stages of each time 12% SOC. 
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After each charge period the battery has several  
hours to stabilize, so that the measured voltage 
will  approach  the  OCV.  Next,  another  charge 
pulse follows together with a pause to determine 
the  OCV  for  another  SOC  value.  The  same 
principle  was  handled  for  discharging.  This 
method is already demonstrated in literature [1],  
[2] [12]. This method was chosen because it has  
a short duration and it also allows to integrate a  
sequence of pulses after each pause (Figure 4). It 
was  decided  to  use  this  sequence  only  at  the  
discharge phase  of  the  test.  Later  on,  the  data 
retrieved from these dynamic sequences of pulses  
will  be used to estimate parameters at different 
SOC.  The  test  uses  one  sequence  of  pulses 
performed three times at different currents of 1C, 
2C and 3C. The test was performed for all three 
different temperatures.

Figure 4: Load cycles for parameter estimations

An overview of the entire test can be found in 
Figure 5.

During  the  charge  phase  the  voltage 
measurements  of  the  OCV will  be higher  than 

during discharge. 
This  is  due to  the very long time to  completely 
stabilize to OCV (more than 24 hours). The OCV 
curve is finally obtained by taken the average of  
the measured points during charge and discharge  
[1]. 

2.5 Parameter estimation
Based on the defined test profile all the data can be 
collected  to  estimate  the  parameters  for  all  the 
conditions.  In  this  section  two  parameter 
estimation  techniques  are  considered:  Parameter  
Estimation Tool and Extended Kalman filter.

2.5.1 Parameter Estimation Tool
The Parameter Estimation Tool allows to calibrate 
the  response  of  a  model  based  on  the  physical  
behaviour of a dynamical system. In literature few 
publications can be found which use this method  
[8] [11]. The response of the model is optimized by 
an  iterative  estimation  of  the  parameters.  This 
optimization  is  done  by  applying  the  nonlinear  
least squares method.

For  each  combination  of  current  value,  
temperature and SOC an estimation of the different 
parameters can be made. Due to the large number  
of required estimations,  the estimation procedure  
was  automated  via  Matlab.  Since  the  average 
current during this the test profile is low, the cell  
temperature  will  not  rise  significantly.  When 
running  the  test  at  10°C  the  cell  temperature 
increased only 3.4°C. When applying the test with 
other temperatures, this temperature difference was 
even lower. 

Figure 5: Overview of the test profile

It  is  therefore  assumed  that  the  parameters  are 
estimated at  constant  temperatures of 10 °C, 20  

°C and 30 °C. The result  of an estimation with 
currents of 2C during the fourth sequence at 20 °C  

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 4



is shown in .

Figure 6: Result of a pulse estimation

The estimation error is  calculated by taking the 
difference  between  the  simulated  and  measured 
voltage. In this case, the error appears to have a  
maximum of 30.8 mV. One by one each pulse is  
estimated.  These  estimations  showed  that  the 
range of the maximum absolute error is between 
6.4  mV  and  156.7  mV.  After  the  estimation 
process,  all  parameter  values  were  implemented 
in look-up tables.

2.5.2 Extended Kalman filter

The Extended Kalman filter is a derivative of the 
Kalman filter, which is only applicable for linear 
systems.  The  filter  uses  stochastic  'a  priori'  
assumptions  and  translates  this  after  every new 
observation  in  a  revised  assumption,  the  'a 
posteriori'  estimation.  The  'a  priori'  and  'a 
posteriori' assumptions can be found in the form 
of  time-dependent  and  measurement-dependent  
update  equations.  The  assumption  is  adjusted  
based  on  new measurements.  When  performing 
the  time-dependent  update  equations,  the  filter  
tries  to  make a  prediction of  the  different  state 
variables (1)  and the covariance of the result  is  
calculated (2).  The  prediction  is  based  on  a 
linearized model (1). The 'a priori' estimations are 
represented  using a  tilde  (~).  When performing 
the measurement-dependent update equations (3),  
(4), and (5), the estimation is being adjusted based 
on  information  obtained  from  the  recent 
measurement.  Here,  the  state  variables  will  be 
adjusted so that the difference between reality and 
simulation is  minimized.  The  covariance  of  the 
parameters  is  then  calculated  again  (6).  The  'a 
posteriori' estimates are represented using a caret  

(^).

Time-dependent update equations: 
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The  proposed  model  is  a  nonlinear  system.  
Therefore, an Extended Kalman filter is used. The 
dynamic model (7) and observation model (8) are  
linearized  each  iteration  in  the  most  recent 
estimate.  Consequently the update equations are  
changed slightly compared to the original Kalman  
filter.
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While  going  through  the  iterative  process,  the  
filter tries to estimate new values of the various  
components of the model. The filter also tries to 
minimize the variance of the estimations. To gain 
valuable  information  from  this  filter,  it  is 
necessary that  a good model is  represented that  
follows  the  reality  well  and  that  good  initial 
estimates  are  given  by  the  user.  Both  the 
observation  model  and  the  dynamic  model  are  
considered to have a certain level of noise using  
the respective covariance matrices R and Q. Both 
are user defined. The covariance matrix R relates  
to the measurement error (noise) of the measuring 
devices and is therefore easy to determine. It can 
be  considered  as  the  variance  measured  at  a  
constant measurement.  The covariance matrix Q 
is  more  difficult  to  determine  and  provides  the 
ability to tune the filter. Here, a diagonal matrix is 
defined  which  defines  for  each  parameter  a  
certain  minimum  variance.  By  adjusting  these 
values,  the  filter  can  be  affected  to  give  better  
estimations. 
To  compare  the  two  parameter  estimation 
techniques,  the  estimations  of  the  Extended 
Kalman  filter  were  also  integrated  in  look-up 
tables. Here, only the look-up tables for currents  
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of  1C  are  considered.  Due  to  the  realtime 
estimation method, the look-up tables will always 
be updated with the latest values of the system.

2.6 Developed simulation model
To  simulate  the  proposed  model  a  simulation 
model  was  developed  in  Matlab/Simulink.  The 
model  consists  of  a  voltage  source  namely,  the 
OCV,  and  the  transfer  function  of  the  internal  
impedance. This research requires variation in the  
parameter values during the simulation. Therefore 
a second order transfer function was used, where  
variables A, B, C, D, E and F represent terms of 
products  consisting  of  the  different  parameters  
(Figure 7).

Figure 7: Scheme of transfer function

The  simulation  model  considers  as  input 
variables:  current  time  series,  temperature  time 
series and initial capacity. During each simulation 
step of 100 ms the output  voltage and SOC are 
calculated based on parameters for corresponding  
conditions. 
The parameters at that moment are derived from 
the earlier generated look-up tables. The correct  

value for the OCV is derived from the OCV-SOC 
relationship. The SOC is calculated by coulomb 
counting. 

3 Results
In  order  to  validate  the  developed  simulation  
model  four  validation test  were  conducted.  The  
first test was performed in a climate chamber at a 
temperature of 25°C. The other three tests were 
not performed in a conditioned room. For these 
tests  the variation of the temperature was taken 
into account.

3.1 Parameter Estimation Tool
The  results  of  the  simulation  for  the  first 
validation test are shown in  Figure 8. As can be 
seen discharge and charge sections and 
pauses are considered. The initial capacity for this  
validation  was  set  to  the  maximum  charge 
capacity  derived  from  previous  tests.  The 
simulation ends with a final capacity of 1.6 Ah. 
The RMS error is 1.4% and a maximum error of 
10.8% is reached. Assuming that batteries used in  
automotive will only work within a range of 20-
80% SOC, a decrease of the maximum RMS error 
can be found. The results of the validation tests  
are summarized in Table 2. The second validation 
test  is  extremely  dynamic  and  consists  of 
discharge pulses and pauses (Figure 9). The third 
validation  regime  consists  of  discharge  pulses  
with different  current  values and the fourth and 
last test is a variant of the first validation regime, 
without any breaks. 

Figure 8: Validation test 1 with Parameter Estimation Tool parameters
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Figure 9: Validation test 2 with Parameter Estimation Tool parameters

Table 2: Information of tests with Parameter Estimation Tool parameters

3.2 Extended Kalman filter
Results derived with the look-up tables (generated 
by  the  Extended  Kalman  filter)  are  shown  in 
Figure  10 and  Figure  11.  In  comparison to  the 
results  of  the  Parameter  Estimation  Tool,  the 
errors  are  generally  higher.  The  results  of  the 
validation tests are summarized in Table 3. 

Note  that  the  results  of  the  fourth  validation 
regime are not present. During this test, the results 
diverged,  resulting from an extrapolation of  the 
look-up tables. The available look-up tables have  
a range of 10-30°C. During the fourth validation 
regime, however, a maximum cell temperature of  
38°C was reached.

Figure 10: Validation test 1 with Extended Kalman filter parameters
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Figure 11: Validation test 2 with Extended Kalman filter parameters

Table 3: Information of tests with Extended Kalman filter parameters

4 Discussion

An important factor in the model seems to be the 
relationship between the State-of-Charge and the 
Open Circuit Voltage. The SOC is defined based 
on the remaining energy in the cell and calculated  
with coulomb counting. It was assumed that the 
gained  capacity  during  charging  can  be  fully  
obtained at discharge with an efficiency of 100%.  
In reality this is not  the case and the difference 
can be defined as the Coulombic efficiency. This  
efficiency  factor  allows  to  determine  the 
maximum  discharge  capacity  when  the  charge  
capacity is known. 

The Coulombic efficiency depends on the current,  
temperature,  SOC, self-discharge and ageing  [9] 
[14].  When  implementing  Coulombic  efficiency 
into the simulation model, the SOC will therefore 
be lower, hence the OCV during simulation will  
also be lower. At low SOC it is noticed that the 
simulated  voltage  for  the  Parameter  Estimation 
Tool  always  remains  higher  than  the  actual  
voltage.  When  taking  the  Coulombic  efficiency 
into account, the SOC will lower, which will 

result in a smaller error in the region of 20% till  
0% SOC. So an accurate determination of SOC 
will  increase the accuracy of the model for low 
and  high  SOC.  The  influence  of  the  SOC 
calculation  was  demonstrated  by  taking  a 
Coulombic efficiency of 97% into account during 
the  simulation  of  the  first  validation  test.  The 
simulation ended at  a  capacity of  0.09 Ah. The 
RMS minimum error is now only 0.7% and the 
maximum  error  is  6.6%.  In  simulations,  this 
Coulombic efficiency is not known, but the results 
do show that  the model  can be  improved.  It  is  
therefore  important  to  predict  the  remaining 
capacity  by  means  of  an  algorithm  or  look-up  
tables.  It  should  also  be  noted  that  there  are  
different definitions of SOC in literature. One can 
define  that  a  cell  is  empty  when  it  reaches  its 
minimum voltage. Using a correct algorithm the  
final SOC should be 0%. However, it appears that  
a  cell  after  a  time  break  still  has  some  usable 
capacity [10].  In this case, the above mentioned 
theory is no longer correct and the SOC will not 
be 0%.It can be concluded that an accurate SOC 
determination  is  important  for  the  model. 
Currently, there are many studies on alternatives 
for  Coulomb  counting  to  determine  SOC.  One 
example  is  the  estimaton  of  SOC  using  an 
Extended  Kalman  filter [6].  This  study  also 
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attempted to estimate the OCV, as it is related to 
SOC. A small voltage error on the estimation of 
the OCV, however, quickly gave an error of 10% 
in the determination of the SOC.
As  the  SOC  decreases,  the  estimation  error 
increases  during  simulation.  The  parameter 
estimations with Parameter Estimation Tool show 
that  the  error  increases  as  the  current  rises.  A 
possible explanation for this may be due to the  
assumption  of  a  constant  OCV  during  the 
parameter estimations. When estimating a pulse,  
this pulse will affect the SOC. Discharge pulses of 
120 A for 20 seconds, correspond to an extraction  
of 0.67Ah. At high and low SOC, the path of the 
OCV curve is no longer flat,  so here it can’t be 
assumed  that  OCV  is  constant  during  the 
estimation.  This  concept  is  illustrated  in  Figure
12.

Figure 12: Influence of a pulse on OCV

During this  research the  implemented Extended 
Kalman filter was also estimating the OCV. This 
study  shows  that  the  OCV is  a  very  important 
factor because of the slope at high and low SOC. 
The results of the Extended Kalman filter could 
probably  be  improved  by  not  taking  OCV into 
account during the estimation.
The  accuracy  of  the  model  can  be  further  
improved  by  optimizing  the  defined  pulse  
sequence.  The pulses  have a  duration of  ten or  
twenty seconds with rest periods of thirty seconds.  
This consideration has an impact on both of the  
estimations.  Because  a  break  takes  only  thirty  
seconds, it is difficult to estimate the largest time 
constant.  The value of the second time constant  
appears to be about forty seconds. Therefore it is  
proposed  to  increase  the  duration  of  the  pulses  
and  rest  periods.  There  is  also  a  rest  period 
between the cycles of different  loads (1 C,  2 C 
and  3  C).  Optionally  the  initial  pause  of  three 
minutes can also be increased. This original break 
is  currently  not  long  enough  for  the  battery  to 
stabilize.  So pulses  at  1C are also affecting the 
voltage  behaviour  at  2  C  and  3  C  is.  Another 

option is to redefine the pulse sequence with only  
one load current. Therefore the test will need to be 
performed three times
In  addition,  the  accuracy  of  the  model  can  be  
increased by avoiding extrapolation of the look-up  
tables.  For  example,  introducing  a  higher 
resolution of the lookup tables and an extended  
temperature range. It is also possible to refine the 
model further e.g. a distinction of parameters for 
charge and discharge.
The  estimations  are  showing  the  complexity  of 
deciding when to store certain parameter under a  
certain  condition.  In  fact,  when  storing  the 
estimations of the Extended Kalman filter a lot of  
information  is  lost.  Nevertheless,  the  Extended 
Kalman filter is interesting for further research. It 
could be used for example to estimate the State-
Of-Health  (SOH)  of  a  battery  by  studying  the 
change of internal impedance as the battery ages.
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